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Introduction 
 
There are many things humans find easy to do that computers 
are currently unable to do. Tasks such as visual pattern 
recognition, understanding spoken language, recognizing and 
manipulating objects by touch, and navigating in a complex 
world are easy for humans. Yet, despite decades of research, we 
have no viable algorithms for performing these and other 
cognitive functions on a computer. 
 
In a human, these capabilities are largely performed by the 
neocortex. Hierarchical Temporal Memory (HTM) is a 
technology that replicates the structural and algorithmic 
properties of the neocortex. HTM therefore offers the promise of 
building machines that approach or exceed human level 
performance for many cognitive tasks. 
 
HTMs are unlike traditional programmable computers. With 
traditional computers, a programmer creates specific programs 
to solve specific problems. For example, one program may be 
used to recognize speech and another completely different 
program may be used to model weather. HTM, on the other 
hand, is best thought of as a memory system. HTMs are not 
programmed and do not execute different algorithms for 
different problems. Instead, HTMs “learn” how to solve 
problems. HTMs are trained by exposing them to sensory data 
and the capability of the HTM is determined largely by what it 
has been exposed to. 
 
HTMs are organized as a tree-shaped hierarchy of nodes, where 
each node implements a common learning and memory function. 
HTMs store information throughout the hierarchy in a way that 
models the world. All objects in the world, be they cars, people, 
buildings, speech, or the flow of information across a computer 
network, have structure. This structure is hierarchical in both 
space and time. HTM memory is also hierarchical in both space 
and time, and therefore can efficiently capture and model the 
structure of the world. 
 
HTMs are similar to Bayesian Networks; however, they differ 
from most Bayesian Networks in the way that time, hierarchy, 
action, and attention are used. HTMs can be implemented with 
software on traditional computer hardware, but it is best to think 
of an HTM as a memory system. 
 
This paper describes the theory behind HTMs, what HTMs do, 
and how they do it. It describes in detail the two most important 

capabilities of HTMs, the ability to discover and infer causes. It 
introduces the concepts behind two other HTM capabilities, 
prediction and behavior. 
 
This paper describes the theory behind Numenta’s products, but 
does not describe the products themselves. Separate 
documentation describes Numenta’s products and how to apply 
HTM technology to real world problems. 
 
HTM was derived from biology. Therefore, there is a detailed 
mapping between HTM and the biological anatomy of 
neocortex. Interested readers can find a partial description of this 
in Chapter 6 of the book On Intelligence (Times Books, 2004). It 
is not necessary to know the biological mapping of HTM to 
deploy HTM-based systems. 
 
The concepts behind Hierarchical Temporal Memory are not 
particularly hard, but there are a lot of them so the learning curve 
can be steep. This paper is designed to be readable by any 
sufficiently motivated person. We don’t assume any particular 
mathematical ability. (A complete mathematical description of 
the algorithms described in this paper is available from Numenta 
under license.) Learning how to design an HTM-based system is 
about as difficult as learning how to write a complex software 
program. Anyone can learn how, but if you are starting from 
scratch, there is a lot to learn. 
 
The paper is divided into seven major sections, listed below. 
 
1. What do HTMs do? 

2. How do HTMs discover and infer causes? 

3. Why is hierarchy important? 

4. How does each node discover and infer causes? 

5. Why is time essential for learning? 

6. Questions 

7. Conclusion  
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1. What do HTMs do? 
 
It has been known for over twenty-five years that the neocortex 
works on a common algorithm; vision, hearing, touch, language, 
behavior, and most everything else the neocortex does are 
manifestations of a single algorithm applied to different 
modalities of sensory input. The same is true for HTM. So when 
we describe what HTMs do and how they work, our explanation 
will be in a language that is independent of sensory modality. 
Once you understand how HTMs work, you will understand how 
HTMs can be applied to a large class of problems including 
many that have no human correlate. 
 
HTMs perform the following four basic functions regardless of 
the particular problem they are applied to. The first two are 
required, and the latter two are optional. 
 

1)  Discover causes in the world 
2)  Infer causes of novel input 
3)  Make predictions 
4)  Direct behavior 

 
We will look at each of these basic functions in turn. 

 
1.1 Discover causes in the world 
Figure 1 shows how an HTM system relates to the world. On the 
left of this figure is a box representing a world the HTM is to 
learn about. The world consists of objects and their relationships. 
Some of the objects in the world are physical such as cars, 
people, and buildings. Some of the objects in the world may not 
be physical such as ideas, words, songs, or the flow of 
information on a network. The important attribute of the objects 
in the world from an HTM’s perspective is that they have 
persistent structure; they exist over time. We call the objects in 
the world “causes”. You can think of this world by asking 
questions such as “what was the ultimate ‘cause’ of the pattern 
on my retina” or “what was the ultimate ‘cause’ of the sound 
entering my ears”. There is a hierarchy of causes active in the 
world at any moment in time. While listening to spoken 
language, the causes of the sound entering your ears are 
phonemes, words, phrases, and ideas. These are simultaneously 
active and all valid causes of the auditory input. 
 

 

 
There is one large physical world that we all reside in. However, 
a particular HTM may be only concerned with a subset of this 
world. An HTM may be restricted to knowledge about financial 
markets, it may only interface to weather phenomenon, or it may 
only interface to and understand geophysical data, demographic 
data, or data collected from sensors attached to a car. From now 
on, when we refer to the “world” of the HTM, we mean the 
limited part to which the HTM is exposed. 
 
On the right side of Figure 1 is an HTM. It interfaces to its world 
through one or more senses shown in the middle of the figure. 
The senses sample some attribute of the world such as light or 
touch, though the senses used by an HTM do not need to be the 
same senses humans have. Typically the senses don’t directly 
detect the objects in the world. You don’t have a “car sense” or a 
“word sense”. Indeed, one of the goals of an HTM is to discover 
from the raw sensory input that objects like “cars” and “words” 
exist.  Senses typically present an array of data to the HTM, 
where each element in the array is a measurement of some small 
attribute of the world. In a human, the optic nerve that carries 
information from the retina to the cortex consists of about one 
million fibers where each fiber carries information about light in 
a small part of visible space. The auditory nerve is about thirty 
thousand fibers, where each fiber carries information about 
sound in a small frequency range. The senses attached to an 
HTM will generally have a similar arrangement. That is, the 
sensory data will be a topologically arrayed collection of inputs, 
where each input measures a local and simple quantity. 
 
All HTM systems have some type of sensory input, even if the 
data is coming from a file. From an HTM’s perspective, there 
are two essential characteristics of sensory data. First, the 
sensory data must measure something that is directly or 
indirectly impacted by the causes in the world that you might be 
interested in. If you want the HTM to learn about weather, it 
must sense something related to weather such as air temperature 
and pressure at different locations. If the HTM is to understand 
computer network traffic, it might sense packets per second and 
CPU loads at routers. Second, the sensory data must change and 
flow continuously through time, while the causes underlying the 
sensory data remain relatively stable. The temporal aspect of 
sensory data can come from movements or changes of the 
objects in the world (such as a car driving by or the minute by 
minute fluctuations of a stock market), or it can come from 
movement of the sensory system itself through the world (as 
when you walk through a room or move your fingers over an 
object). Either way, the sensory data must change continuously 
over time for an HTM to learn. 
 
The HTM receives the spatio-temporal pattern coming from the 
senses. At first, the HTM has no knowledge of the causes in the 
world, but through a learning process that will be described 
below, it “discovers” what the causes are. The end goal of this 
process is that the HTM develops internal representations of the 
causes in the world. In a brain, nerve cells learn to represent 
causes in the world, such as a cell that becomes active whenever 
you see a face. In an HTM, causes are represented by numbers in 

“Beliefs” 

People 
Cars 
Buildings 
Words 
Songs 
Ideas 

World HTM Senses 

“Causes” 

patterns 
cause1   0.22 
cause2   0.07 
cause3   0.00 
cause4   0.63 
cause5   0.00 
cause6   0.08 

Figure 1 
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a vector. At any moment in time, given current and past input, an 
HTM will assign a likelihood that individual causes are currently 
being sensed. The HTM’s output is manifest as a set of 
probabilities for each of the learned causes. This moment-to-
moment distribution of possible causes is called a “belief”. If an 
HTM knows about ten causes in the world, it will have ten 
variables representing those causes. The value of those variables 
– its belief – is what the HTM believes is happening in its world 
at that instant. Typical HTMs will know about many causes, and 
as you will see, HTMs actually learn a hierarchy of causes. 
 
Discovering causes is at the heart of perception, creativity, and 
intelligence. Scientists try to discover the causes of physical 
phenomenon. Business people seek to discover the causes 
underlying markets and business cycles. Doctors seek to 
discover the causes of disease. From the moment you were born, 
your brain slowly learned representations for all the things you 
eventually came to know. You had to discover that cars, 
buildings, words, and ideas are persistent structures in the world. 
Before you are able to recognize something, your brain has to 
first discover that the thing exists. 
 
All HTM systems need to go through a learning phase where the 
HTM learns what the causes in its world are. All HTMs first 
learn about the small and simple causes in their world. Large 
HTMs, when presented with enough sensory data, can learn high 
level, sophisticated causes. With sufficient training and proper 
design, it should be possible to build HTMs that discover causes 
humans have not been able to discover. After initial training, an 
HTM can continue to learn or not, depending on the needs of the 
application. 
 
There can be much value in just discovering causes. 
Understanding the high level causes for market fluctuations, 
disease, weather, manufacturing yield, and failures of complex 
systems, such as power grids, is valuable. Discovering causes is 
also a necessary precursor for inference, the second capability of 
HTMs. 
 
1.2 Infer causes of novel input 
After an HTM has learned what the causes in its world are and 
how to represent them, it can perform inference. “Inference” is 
similar to pattern recognition. Given a novel sensory input 
stream, an HTM will “infer” what known causes are likely to be 
present in the world at that moment. For example, if you had an 
HTM-based vision system, you could show it pictures and it 
would infer what objects are in the picture. The result would be a 
distribution of beliefs across all the learned causes. If the picture 
was unambiguous, the belief distribution would be peaked. If the 
picture was highly ambiguous, the belief distribution would be 
flat because the HTM wouldn’t be certain what it was looking at. 
 
The current inferred beliefs of an HTM can be directly read from 
the system to be used elsewhere external to the HTM (something 
not possible in human brains!). Alternatively, the current belief 
can be used internally by the HTM to make predictions or to 
generate behavior. 
 

In most HTM systems, the sensory input always will be novel. In 
a vision system attached to a camera, there might be one million 
pixels as sensory input. If the camera were looking at real world 
scenes, it is highly unlikely that the same pattern would ever be 
presented to the HTM twice. Thus, HTMs must handle novel 
input both during inference and during training. In fact, HTMs 
don’t have a separate inference mode. HTMs are always 
inferring causes even while learning (albeit inferring poorly 
before much training has occurred). As mentioned earlier, it is 
possible to disable learning after training and still do inference. 
 
Many HTM applications will require time-varying sensory input 
to do inference, although some do not. It depends on the nature 
of the sense and the causes. We can see this distinction in 
humans. Our auditory and tactile senses can infer almost nothing 
without time. We must move our hands over objects to infer 
what they are through touch. Similarly, a static sound conveys 
little meaning. Vision is mixed. Unlike touch and hearing, 
humans are able to recognize images (i.e. infer causes) when an 
image is flashed in front of them and the eyes do not have time 
to move. Thus, visual inference does not always require time 
changing inputs. However, during normal vision we move our 
eyes, we move our bodies, and objects in the world are moving 
too. So static, flashed picture identification is a special case 
made possible by the statistical properties of vision. The general 
case, even for vision, is that inference occurs with time-varying 
inputs. 
 
Even though it is sometimes possible to perform inference with a 
static sensory pattern, the theory behind HTMs shows that it is 
not possible to discover causes without having continuously 
changing inputs. Thus, all HTM systems, even ones that do static 
inference, need to be trained on time-varying inputs. It isn’t 
sufficient that sensory input just changes, for this could be 
accomplished with a succession of unrelated sensory patterns. 
Learning requires that causes persist while the sensory input 
changes. For example, when you move your fingers over an 
apple, although the tactile information is constantly changing, 
the underlying cause – the apple – stays constant. The same is 
true for vision. As your eyes scan over the apple, the pattern on 
the retina changes, but the underlying cause stays constant. 
Again, HTMs are not restricted to human type sensors: changing 
market data, changing weather, and dynamic traffic flow over 
computer networks all would suffice. 
 
Inferring the causes of novel input is valuable. There are many 
pattern recognition problems that humans find easy but existing 
computer algorithms are unable to do. HTMs can solve these 
problems rapidly and accurately, just like humans. In addition, 
there are many inference problems that humans have difficulty 
performing that HTM-based systems can solve. 
 
1.3 Make predictions 
HTMs consist of a hierarchy of memory nodes where each node 
learns causes and forms beliefs. Part of the learning algorithm 
performed by each node is to store likely sequences of patterns. 
By combining memory of likely sequences with current input, 
each node has the ability to make predictions of what is likely to 
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happen next. An entire HTM, being a collection of nodes, also 
makes predictions. Just as an HTM can infer the causes of novel 
input, it also can make predictions about novel events. Predicting 
the future of novel events is the essence of creativity and 
planning. Leaving the details of how this works for later, we can 
state now what prediction can be used for. There are several uses 
for prediction in an HTM, including priming, imagination and 
planning, and generating behavior. A few words on these uses 
are warranted at this time. 
 
Priming 
When an HTM predicts what is likely to happen next, the 
prediction can act as what is called a “prior probability”, 
meaning it biases the system to infer the predicted causes. For 
example, if an HTM were processing text or spoken language, it 
would automatically predict what sounds, words, and ideas are 
likely to occur next. This prediction helps the system understand 
noisy or missing data. If an ambiguous sound arrives, the HTM 
will interpret the sound based on what it is expecting. 
 
In an HTM, we have the ability to set prior probabilities 
manually in addition to having prior probabilities set via 
prediction. That is, we can manually tell the HTM to anticipate 
or look for a particular cause or set of causes, thus implementing 
a directed search. 
 
Imagination and Planning 
HTMs automatically predict and anticipate what is likely to 
happen next. Instead of using these predictions for priming, an 
HTM’s predictions can be fed back into the HTM as a substitute 
for sensory data. This process is what humans do when they 
think. Thinking, imagining, planning the future, and silently 
rehearsing in our heads are all the same thing, and achieved by 
following a series of predictions. HTMs can do this as well. 
Imagining the future can be valuable in many applications. For 
example, suppose a car is equipped with an HTM to monitor 
nearby traffic. If a novel situation occurs, the HTM can follow a 
series of predictions to see what likely events will happen in the 
future, and therefore can imagine dangerous situations before 
they occur. 
 
Prediction is also at the heart of how HTMs can direct motor 
behavior, the fourth and last capability of HTM. 
 
1.4 Direct behavior 
An HTM that has learned the causes in its world, and how those 
causes behave over time, has in essence created a model of its 
world. Now suppose an HTM is attached to a system which 
physically interacts with the world. You can imagine an HTM 
being attached to a robot, but it doesn’t need to be limited to 
that. What is important is that the system can move its sensors 
through its world and/or manipulate objects in its world. In such 
a system, the HTM can learn to generate complex goal-oriented 
behavior. A brief explanation will be given here. 
 
Figure 2a shows a system with an HTM and the ability to 
generate simple behaviors. The motor components of this system 

have built-in, “reflexive”, or hard-wired behaviors. These are 
simple behaviors that exist independently of the HTM. 
 

 
 

Figure 2a 
 
As the HTM discovers the causes in its world, it learns to 
represent its built-in behaviors just as it learns to represent the 
behaviors of objects in the outside world. From the HTM’s 
perspective, the system it is connected to is just another object in 
the world. The HTM forms representations of the behaviors of 
the system it is attached to, and importantly, it learns to predict 
its activity. Next, through an associative memory mechanism, 
the HTM-based representations of the built-in behaviors are 
paired with the mechanisms creating the built-in behaviors 
themselves (Figure 2b). After this associative pairing, when the 
HTM invokes the internal representation of a behavior, it can 
cause the behavior to occur. If the HTM predicts that a behavior 
will occur, it can make the behavior happen in advance. Now the 
HTM is in a position to direct behavior. By stringing together 
sequences of these simple behaviors, it can create novel, 
complex, goal-oriented behaviors. To do this, the HTM performs 
the same steps it does when generating a string of predictions 
and imagining the future. However, now instead of just 
imagining the future, the HTM strings together the built-in 
behaviors to make them actually happen. 
 

 
 

Figure 2b 
 
You can observe the basics of this behavior learning mechanism 
in your own body. Behaviors such as eye movements, chewing, 
breathing, retracting an arm from a sharp object, walking, and 
even running are largely generated in older parts of the brain, not 
the neocortex. Most of the time, these behaviors are generated 
with little or no neocortical involvement. For example, you 
generally are unaware of how your jaw and tongue move when 
chewing, how your legs move when walking, and you are 
normally unaware of your breathing. However, you can 
consciously control your breathing and eye movements, or walk 
in an unusual way. When you do this your neocortex is in 

HTM 
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motor 
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control. The neocortex didn’t know how to do these when you 
were born. It had to learn how in the manner just described. 
 
HTMs can direct the behavior of many different types of 
systems; they aren’t limited to traditional robotics. Imagine an 
office building with heating and air conditioning. There are 
separate temperature controls on each floor. Now we attach an 
HTM to the building. Sensory inputs to the HTM consist of 
temperature sensors throughout the building as well as the 
settings on the temperature controls. The HTM might also get 
inputs representing the time of day, the number of people going 
in and out of the building, the current weather outside, etc. As 
the HTM learns, it builds a model of the building, which 
includes how the temperature controls behave relative to all the 
other things happening to and around the building. It doesn’t 
matter if humans are changing the controls or some other 
computer. The HTM now uses its model to predict when things 
will happen, including when the temperature controls will turn 
on and off or be raised or lowered. By pairing the HTM’s 
internal representations of these actions with the temperature 
controls, the HTM can start directing the “behavior” of the 
building. The HTM may be better at anticipating peak demands 
and therefore be better at maintaining desired temperatures or 
reducing consumed energy. 
 
Summary 
We have briefly discussed the four capabilities of an HTM. 
 

1) Discovering causes in the world 
2) Inferring causes of novel input 
3) Making predictions 
4) Using prediction to direct motor behavior 

 
These are fundamental capabilities that can be applied to many 
types of problems. Now we turn our attention to how HTMs 
actually discover and infer causes. 

2. How do HTMs discover and infer 
causes? 
 
HTMs are structured as a hierarchy of nodes, where each node is 
performing the same learning algorithm. Figure 3 shows a 
simple HTM hierarchy. Sensory data enters at the bottom. 
Exiting the top is a vector where each element of the vector 
represents a potential cause of the sensory data. Each node in the 
hierarchy performs the same function as the overall hierarchy. 
That is, each node looks at the spatio-temporal pattern of its 
input and learns to assign causes to this input pattern. Said 
simply, each node, no matter where it is in the hierarchy, 
discovers the causes of its input. 
 
The outputs of nodes at one level become the inputs to the next 
level in the hierarchy. Nodes at the bottom of the hierarchy 
receive input from a small area of the sensory input. Therefore, 
the causes they discover are ones that are relevant to a small part 
of the sensory input area. Higher up regions receive input from 
multiple nodes below, and again discover the causes in this 
input. These causes will be of intermediate complexity, 
occurring over larger areas of the entire input space. The node or 
nodes at the top of the hierarchy represent high level causes that 
may appear anywhere in the entire sensory field. For example, in 
a visual inference HTM, nodes at the bottom of the hierarchy 
will typically discover simple causes such as edges, lines, and 
corners in a small part of the visual space. Nodes at the top of 
the hierarchy will represent complex causes such as dogs, faces, 
and cars which can appear over the entire visual space or any 
sub-part of the visual space. Nodes at intermediate levels in the 
hierarchy represent causes of intermediate complexity that occur 
over intermediate-sized areas of the visual space. Remember that 
all these causes need to be discovered by the HTM. They are not 
programmed in or selected by a designer. 
 
          

In an 
HTM, beliefs exist at all levels in the hierarchy, not just at the 
top level. A belief is an internal state of each node. You can 
think of it as a vector of scalar values where each element in the 
vector represents the probability that a cause is active. 
 
Each element in the belief vector (i.e. each cause) stands on its 
own. Each cause can be understood and interpreted on its own 
and has its own meaning. In other words, the meaning of a 

Sensory data 

Beliefs 

Figure 3 
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variable representing a cause does not vary depending on what 
other causes might be active in the same belief vector. This does 
not mean the causes represented by a node are statistically 
independent, or that only one is active at a time. Several causes 
may be active at once. Representations used in HTM are 
different than say the representations used in ASCII codes. A 
particular bit in the eight bit ACSII code has no meaning on its 
own. 
 
The outputs of nodes are also vectors. The outputs are similar to 
the belief of the node, and are derived from the belief vector. For 
now, we will act as if the outputs of a node are its belief. Even 
though this isn’t completely correct, it will make it easier to 
describe the operation of HTMs. 
 
With this in mind, we can say the inputs to a node are the beliefs 
from its child nodes. The output of a node is a belief that 
becomes part of the input to its parent(s). It is even correct to 
think of the lowest level sensory data as beliefs coming from a 
sensory system. 
 
In an ideal world, there would be no ambiguity at each node. 
However, this does not occur in practice. One of the important 
properties of an HTM is that it rapidly resolves conflicting or 
ambiguous input as information flows up the hierarchy. 
 
Each node in an HTM generally has a fixed number of causes 
and a fixed number of output variables. Therefore, an HTM 
starts with a fixed number of possible causes, and through 
training, it learns to assign meaning to them. The nodes do not 
“add” causes as they are discovered, instead, over the course of 
training the meaning of the outputs gradually change. This 
happens at all levels in the hierarchy simultaneously. A 
consequence of this learning methodology is that an untrained 
HTM cannot form very meaningful representations at the top of 
the hierarchy until nodes at the bottom of the hierarchy have 
undergone sufficient training. 
 
The basic operation of each node is divided into two steps. The 
first step is to assign the node’s input pattern to one of a set of 
quantization points (representing common spatial patterns of 
input). If a node has 100 quantization points, the node assigns a 
probability to each of the 100 quantization points that the current 
input matches that quantization point. Again, in this first step, 
the node decides how close (spatially) the current input is to 
each of its quantization points and assigns a probability to each 
quantization point. 
 
In the second step, the node looks for common sequences of 
these quantization points. The node represents each sequence 
with a variable. As input patterns arrive over time, the node 
assigns to these variables a probability that the current input is 
part of each sequence. The set of these sequence variables is the 
output of the node, and is passed up the hierarchy to the 
parent(s) of the node. 
 
A node also can send information to its children. The messages 
going down the hierarchy represent the distribution over the 

quantization points, whereas the messages going up the 
hierarchy represent the distribution over the sequences. 
Therefore, as information passes up the hierarchy, each node 
tries to coalesce a series of input patterns into a relatively stable 
output pattern. As information flows down the hierarchy, each 
node takes a relatively stable pattern from its parent node(s) and 
tries to turn it into a sequence of spatial patterns. 
 
By assigning causes to sequences of patterns, there is a natural 
coalescing of time as patterns move from the bottom of the 
hierarchy to the top. Fast changing low-level input patterns 
become slower changing as they rise to the top. The opposite is 
also true. Relatively stable patterns at the top of the hierarchy 
can unfold into complex temporal patterns at the bottom of the 
hierarchy. The changing input patterns arriving at a node are 
analogous to a series of musical notes. Sequences of these notes 
are like melodies. If the input stream arriving at a node matches 
one of its learned melodies, the node passes the “name” of the 
melody up the hierarchy, not the individual notes. The next 
higher regions are doing the same thing, looking for sequences 
of sequences, etc. Each node predicts what note or notes are 
likely to follow next and these predictions are passed down the 
hierarchy to the child regions. 
 
The number of levels of the hierarchy, the number of nodes at 
each level, and the capacity of each node are not critical to the 
basic theory of HTMs. Similarly, the exact connectivity between 
nodes is not critical as long as every two connected nodes have a 
clear parent/child relationship in the hierarchy. Figure 4 shows 
several variations of connectivity that are all valid HTMs. The 
design and capacity of a particular HTM must be matched to the 
problem being addressed and the available computing resources. 
A lot of effort may be required to get optimal performance. 
However, all configurations of HTM will work to some degree. 
In this regard, the system is robust. 
 
 

Given that each node in an HTM has to discover and infer 
causes (exactly what the entire HTM has to do albeit on a 
smaller scale), we are led to ask two questions. First, why is the 
use of a hierarchy important? That is, why is it easier to discover 
and infer causes using a hierarchy of nodes? Second, how does 
each node discover causes and do inference? After all, each node 

Figure 4 

Regular hierarchy Generation skip Multiple parents 

Combining 
hierarchies 
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still has to solve the same problem that the entire system has to 
solve. We will address the first of these two questions next. 

3. Why is a hierarchy important? 
 
There are four reasons why using a hierarchy of nodes is 
important. We will touch on each one, starting with the most 
important. 
 
3.1 Shared representations lead to generalization 
and storage efficiency 
Many methods that have been proposed to do pattern recognition 
are unable to scale to large problems. Often these methods fail 
because the amount of memory required, and the amount of time 
required to train, grows exponentially as the problem space gets 
large, thereby making it impractical to build large systems. 
HTMs can require lots of training and large amounts of memory, 
but they do not suffer exponential problems of scale. The 
hierarchy in HTMs is the key to why they can scale. Causes in 
lower levels of the hierarchy are shared among higher-level 
causes, significantly reducing the amount of time and memory 
required to learn new causes, and providing the HTM a means to 
generalize previously learned behaviors to new and novel 
causes. 
 
To help you understand why HTMs can solve problems that 
other algorithms cannot solve, we will look a bit more deeply 
into the difficulties these other approaches have had. We will use 
visual pattern recognition as our example problem because this 
problem has undergone much study and is familiar to many 
researchers. But remember, the HTM algorithm and the issues 
we are discussing are not specific to vision. 
 
The most basic approach one can use to recognize objects in 
visual images is to store a prototypical representation for each 
object to be recognized. Unknown patterns are then put through 
a set of transformations to get them to match the prototypes. We 
will call this the “prototype and transformation” method. For 
example, if you wanted to recognize printed letters you could 
store a prototype image for each letter to be recognized. Given 
an unknown image you would first translate the unknown image 
in x-y coordinates to center it. Then you would perform a scaling 
transformation to make it the same size as the prototypes. Then 
you might rotate the unknown image. Finally you use some 
distance metric between the transformed unknown and the 
prototypes to determine the best match. This approach can work 
for simple problems such as printed character recognition but it 
quickly falls apart for more complex problems. For most real 
world objects, you can’t identify a “prototypical” image. The 
number of possible transformations is nearly unlimited, and 
often there is no possible transformation that can be performed 
to convert an unknown into a prototype. 
 
For example, imagine you are trying to recognize a picture of a 
dog. In your prototype dog image, the dog is facing left, and in 
your unknown image, the dog is facing right (of course you 
don’t know this because the image is unknown). You could try a 
“rotation through plane” transformation on the unknown image 
and now it too would be facing left. However, what if you had 
two images, one of a Great Dane and the other of a Pekinese? A 
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human would recognize both of these as dogs, but what kind of 
transformation could be used to convert one representation to the 
other? It is hard to say. Worse still, what if one picture was 
looking at the head of a dog, and the other was looking at the 
rear of the dog. Humans have no trouble recognizing both 
images as dogs, but in cases like this, there are no regular 
transformations that can convert the rear of a dog into the head 
of a dog. Vision scientists have tried many ways to overcome 
this problem. Ultimately they realized they have to store more 
than one prototype for each object to be recognized. Perhaps 
they need prototypes for each breed of dog and each from many 
different angles. 
 
How many different examples of the objects are needed? If you 
could store every image of every dog you ever have seen, then 
supposedly it would be easier to recognize an unknown image as 
a dog by comparing it to all previously seen images. Of course, 
this is impractical. First, there are virtually an unlimited number 
of images that might be required for each object, and second, 
you still have to perform some transformations and apply a 
distance metric to compare a novel unknown to the many 
previously stored prototypes. Systems attempting to store 
multiple prototypes take too long to train and run out of 
memory. Thus, all methods of the types just described work only 
on simple problems. When applied to real world images, they 
fail. Today, general vision recognition by a computer remains 
unsolved. 
 
HTMs can do large scale visual inference with practical amounts 
of memory and with limited processing time. HTMs do not 
perform any transformations as part of the inference process. A 
visual system built using an HTM does not rotate, translate, 
scale, or perform any other transformation on an unknown image 
to get it to “match” a prototype. Indeed, an HTM visual system 
doesn’t even have stored prototypes in the usual sense. HTMs 
try to match inputs to previously seen patterns, but they do so a 
piece at a time and in a hierarchy. 
 
To see how, let’s start by imagining one node at the bottom of 
the hierarchy, a node looking at a small part of the visual input. 
If this node were looking at a 10x10 image patch (100 binary 
pixels), the number of possible patterns it might see is 2100, a 
very large number. Even if the node only saw a tiny fraction of 
the possible patterns, it couldn’t store every pattern that it would 
likely see in its lifetime. Instead, the node stores a limited, fixed 
number, of patterns, say 50 or 100. These stored patterns are the 
quantization points. You can think of the quantization points as 
the most common patterns seen by the node during training. 
Further training will not increase the number of quantization 
points, but it can change them. At every moment, the node takes 
a new and novel input and determines how close it is to each 
stored quantization point. Note that this low-level node knows 
nothing about large objects such as dogs and cars because in a 
10x10 pixel patch you can only see a small part of a big object. 
The causes this node can discover are limited in number and 
limited in complexity. Typically in a visual system, causes 
discovered by a node at the bottom of the hierarchy correspond 
to causes such as edges and corners. These causes can be part of 

many different higher level causes. An edge can be part of a dog, 
a cat, or a car. Therefore, the memory used to store and 
recognize low level causes will be shared among high level 
causes. 
 
A node one step up in the hierarchy receives as its input the 
output of all its child nodes. (Assume the output of a node is just 
the distribution over the quantization points, ignoring for now 
the role of sequence memory.) This second-level node assigns 
quantization points to the most commonly occurring 
coincidences of lower level causes. This means that the second 
level node can learn to represent only those causes that are 
combinations of lower level causes. This restriction applies 
again and again as you go up the hierarchy. The design is such 
that we gain an exponential increase in memory efficiency by 
sharing representations in a hierarchy. The negative side of this 
constraint is that the system cannot easily learn to recognize new 
objects that are not made up of previously learned sub-objects. 
This limitation is rarely a problem because new objects in the 
world are generally formed by combinations of previously 
learned sub-objects. 
 
Although sharing representations in a hierarchy makes inference 
possible, HTMs still may use a lot of memory. Think back to the 
example of recognizing a dog facing left or facing right. For an 
HTM-based visual system to recognize both images (i.e. assign 
them to the same cause), it has to be exposed to dogs or similar 
animals facing both left and right (and many other orientations). 
This requirement will make no difference at the lowest levels of 
the hierarchy, but it does mean that at mid-levels and higher, the 
HTM has to store many different combinations of low level 
objects and assign them to the same cause. Therefore, HTMs use 
a lot of memory, but the hierarchy ensures that the amount of 
memory needed is finite and of a practical size. 
 
After sufficient initial training, most new learning occurs in the 
upper levels of the HTM hierarchy. Imagine you have an HTM 
that has been trained to recognize different animals through a 
visual sense. Now we present a new type of animal and ask the 
HTM to learn to recognize it. The new animal shares many 
attributes with previously learned animals. It might have eyes, 
fur, ears, tail, legs, or scales. The details of a new animal, such 
as it eyes, are similar or identical to the details learned 
previously and need not be relearned. As another example, 
consider that when you learn a new word you don’t need to learn 
new letters, syllables, or phonemes. This greatly reduces both 
the memory and time it takes to learn to recognize new objects. 
 
When training a new HTM from scratch, the lower-level nodes 
become stable before the upper-level nodes, reflecting the 
common sub-properties of causes in the world. As a designer of 
an HTM, you can disable learning for lower-level nodes after 
they become stable, thus reducing the overall training time for a 
given system. If an HTM is exposed to new objects that have 
previously unseen low-level structure, it will take much longer 
for the HTM to learn the new object and to recognize it. We see 
this trait in human performance. Learning new words in a 
language you are familiar with is relatively easy. However, if 



                                                                                                                                                                                                    

 
3/27/2007                                                                                 © 2006 Numenta, Inc. 9 

you try to learn new words from a foreign language which has 
novel sounds and phonemes you will find it is hard and takes 
longer. 
 
Sharing representations in a hierarchy also leads to 
generalization of expected behavior. When exposed to a new 
animal, if you see a mouth and teeth, you have an automatic 
expectation that the new animal eats with the mouth and might 
bite you. This expectation might not seem surprising but it 
illustrates the power of shared sub-causes in a hierarchy. A new 
object in the world inherits the known behavior of its sub-
components. 
 
3.2 The hierarchy of HTM matches the spatial and 
temporal hierarchy of the real world 
One of the reasons that HTMs are efficient in discovering causes 
and performing inference is that the structure of the world is 
hierarchical. Imagine two points in visual space. We can ask 
how correlated are the light values of those two points. If the 
points are very close to each other then their values will be 
highly correlated. However, if the two points are visually far 
apart it will be difficult to find correlations between them. HTMs 
exploit this structure by first looking for nearby correlations in 
sensory data. As you ascend the hierarchy, the HTM continues 
this process, but now it is looking for correlations of nearby 
causes from the first level, then correlations of nearby causes 
from the second level, etc. 
 
The objects in the world, and the patterns they create on the 
sensory arrays, generally have hierarchical structure that can be 
exploited by the HTM’s hierarchy. A body has major parts such 
as a head, torso, arms, and legs. Each of these is composed of 
smaller parts. The head has hair, eyes, nose, mouth, ears, etc.  
Each of these is composed of yet smaller parts. An eye has 
lashes, pupil, iris, and lid. At each level of the hierarchy, the 
subcomponents are near each other in the input pattern arriving 
from lower levels in the hierarchy. 
 
Note that if you were to randomly mix up the pixels coming 
from a camera, then an HTM visual system would no longer 
work. It wouldn’t be able to discover the causes in the world 
because it wouldn’t be able to first find local correlations in its 
input. 
 
HTMs do not just exploit the hierarchical spatial structure of the 
world. They take advantage of the hierarchical temporal 
structure of the world as well. Nodes at the bottom of an HTM 
find temporal correlations among patterns that occur relatively 
close together in both space and time: “pattern B immediately 
follows pattern A”. Because each node converts a sequence of 
spatial patterns into a constant value, the next level in the 
hierarchy looks for sequences of sequences. The world is 
hierarchical in a temporal sense, not just spatially. For example, 
language is a hierarchically structured temporal sequence. 
Simple sounds are combined into phonemes, phonemes are 
combined into words, and words are combined into phrases and 
ideas. The temporal hierarchical structure of language may be 

obvious, but even vision is structured this way, at least for a 
system that can move about in the world. Visual patterns that are 
experienced sequentially in time are likely to be correlated. 
Patterns that are experienced far apart in time are less likely to 
be correlated in the raw sensory data, but may be correlated 
when looking at higher level causes. 
 
Most real-world environments such as markets, traffic, 
biochemical reactions, human interactions, language, galaxies, 
etc. have both temporal and spatial structure, and both are 
hierarchical in nature. This structure is a natural result of the 
laws of physics where the forces of nature are strongest for 
objects that are close in space and time. 
 
In summary, HTMs work because the world has spatial and 
temporal correlations that are hierarchically organized. 
Correlations are first found among nearest neighbors (in space 
and time). Each node in the hierarchy coalesces both time and 
space, and therefore, as information ascends the hierarchy of the 
HTM, the representations cover larger areas of sensory space, 
and longer periods of time. 
 
When designing an HTM system for a particular problem, it is 
important to ask whether the problem space (and the 
corresponding sensory data) have hierarchical structure. For 
example, if you desire an HTM to understand financial markets, 
you might want to present data to the HTM where adjacent 
sensory input data are likely to be correlated in space and time. 
Perhaps this means first grouping stock prices by category, and 
then by industry segment. (E.g. technology stocks such as 
semiconductors, communications, and biotechnology would get 
grouped together in the first level. At the next level, the 
technology group is combined with manufacturing, financial, 
and other groups.). You could build a similar hierarchy for 
bonds, and then at the top combine stocks and bonds. 
 
Here is another example. Suppose you want an HTM to model a 
manufacturing business. At the bottom of the hierarchy might be 
nodes that receive as inputs various manufacturing metrics. 
Another set of nodes at the bottom might receive as inputs 
marketing and sales metrics, and yet another set of low level 
nodes might receive as inputs financial metrics. The HTM is 
more likely to first find correlations among various 
manufacturing metrics than between the cost of advertising and 
the yield of a manufacturing line. However, higher up in the 
hierarchy, nodes can learn to represent causes global to the 
business, spanning manufacturing and marketing. The design of 
an HTM’s hierarchy should reflect the likely correlations in its 
world. 
 
This principle of mapping the hierarchy of an HTM to the 
hierarchical structure of the world applies to all HTM systems. 
 
An interesting question is whether an HTM can have input that 
does not have a spatial hierarchy. For example, could an HTM 
have direct inputs representing words, as opposed to visual input 
of printed letters? Pure words do not have an obvious spatial 
ordering. In a sensory array where each input line represents a 
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different word, how would we arrange the word inputs so that 
local spatial correlations can be found? We don’t yet know the 
answer to this question, but we suspect that HTMs can work 
with such input. Our intuition is that the sensory space could 
have just a temporal hierarchal organization, although most 
causes have both. An argument for this supposition is that at the 
top of a hierarchy you no longer have spatial orientation, such as 
the top of a visual hierarchy. And yet this top node can be an 
input to a node that combines the top visual and top auditory 
beliefs. Above a certain point in the hierarchy, there is no clear 
spatial mapping, no topography to the representations. 
Biological brains solve this problem, suggesting HTMs can as 
well. 
 
Sensory data can be arranged in more than two dimensions. 
Human vision and touch are arranged in two dimensions because 
the retina and skin are two-dimensional sensory arrays and the 
neocortex is a corresponding two-dimensional sheet. But 
suppose we are interested in having an HTM learn about the 
ocean. We can create a three-dimensional sensory array by 
placing temperature and current sensors at different depths for 
each latitude and longitude coordinate. This arrangement creates 
a three-dimensional sensory array. Importantly, we would expect 
to find local correlations in the sensory data as we move in any 
one of these three dimensions. We now can design an HTM 
where each first level node looks at data from a three-
dimensional cube of ocean. The next level of the hierarchy 
would receive input from the low level nodes representing a 
larger cube of ocean, etc. Such a system would be better at 
discovering and inferring causes than one where the sensory data 
had to be collapsed onto a two-dimensional sensor array, as in a 
camera. Humans sometimes have difficulty interpreting high 
dimensional data and we go to lengths to create visualization 
tools to assist us. HTMs can be designed to “see” and “think” in 
three dimensions. 
 
There is no reason why we have to stop at three spatial 
dimensions. There are mathematics and physics problems that 
reside in four or more dimensions, and some everyday 
phenomenon, such as the structure of a business, might best be 
analyzed as high dimensional problems. Many of the causes that 
humans sense via two-dimensional senses might more easily be 
analyzed via a higher dimensional HTM organization. High 
dimensional HTM is an area for exploration. 
 
Some HTM designs will be more efficient than others at any 
particular problem. An HTM that can discover more causes at 
low levels of the hierarchy will be more efficient and better at 
discovering high level causes than an HTM that discovers fewer 
causes at low levels. Designers of some HTM systems will 
spend time experimenting with different hierarchies and sensory 
data arrangements trying to optimize both the performance of the 
system and its ability to find high level causes. HTMs are very 
robust; any reasonable configuration will work – that is, find 
causes – but the HTMs performance and ability to find high 
level causes will be determined by the node-to-node hierarchical 
design of the HTM, what sensory data is presented to the HTM, 

and how the sensory data is arranged relative to the low-level 
nodes. 
 
In summary, HTMs work largely because their hierarchical 
design takes advantage of the hierarchical structure of the world. 
Therefore, a key part of designing an HTM-based system is: 
 

1) Understanding whether the problem space has 
     appropriate spatial-temporal structure. 
2) Making sure that the sensory data is arranged to first 
     capture local correlations in the problem space. 
3) Designing the hierarchy to most efficiently exploit 
     the hierarchical structure in the problem space. 

 
3.3 Belief propagation ensures all nodes quickly 
reach the best mutually compatible beliefs 
A connected graph where each node in the graph represents a 
belief or set of beliefs is commonly referred to as a Bayesian 
network. Thus, HTMs are similar to Bayesian networks. In a 
Bayesian network, beliefs at one node can modify the beliefs at 
another node if the two nodes are connected via a conditional 
probability table (CPT). A CPT is a matrix of numbers where the 
columns of the matrix correspond to the individual beliefs from 
one node and the rows correspond to the individual beliefs from 
the other node. Multiplying a vector representing the belief in a 
source node times the CPT results in a vector in the dimension 
and “language” of beliefs in the destination node. 
 
A simple example will illustrate the idea. Assume we have two 
nodes where node A represents a belief about air temperature 
and has five output variables labeled “hot”, “warm”, “mild”, 
“cold” and “freezing”.  Node B represents a belief about 
precipitation and has four output variables labeled “sunny”, 
“rain”, “sleet”, and “snow”. If we know something about the 
temperature, it can tell us something about the precipitation and 
vice-versa. A CPT matrix encapsulates this knowledge. It is 
fairly easy to populate appropriate values in the CPT by pairing 
the values of the nodes A and B as they change over time. 
Training the CPT and later inferring how knowledge in one node 
affects other nodes can even be done even when the beliefs of 
the two nodes are ambiguous or there is a distribution of beliefs. 
For example, node A may believe there is 0% likelihood it is 
“hot”, 0% likelihood it is “warm”, 20% likelihood  it is “mild”, 
60% likelihood it is “cold”, and 20% likelihood it is “freezing”. 
Multiplying this temperature belief vector times the CPT will 
result in a vector representing the appropriate belief vector about 
precipitation. 
 
Belief Propagation (BP) is a mathematical technique that is used 
with Bayesian networks. If the network of nodes follows certain 
rules, such as not containing any loops, BP can be used to force 
the entire network to quickly settle on a set of beliefs that are 
mutually consistent. With the appropriate network constraints, 
BP shows that the network will reach its optimal state in the time 
it takes a message to traverse the maximum length path through 
the network. BP doesn’t iterate to reach its final state; it happens 
in one pass. If you force a set of beliefs on one or more nodes in 
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a Bayesian network, BP will quickly force all the nodes in the 
network to reach mutually consistent beliefs. 
 
It is helpful for the designer of HTM-based systems to have a 
basic understanding of Bayesian networks and Belief 
Propagation. A thorough introduction is beyond the scope of this 
paper but can easily be found on the internet or in books. 
 
HTM uses a variation of Belief Propagation to do inference. The 
sensory data imposes a set of beliefs at the lowest level in an 
HTM hierarchy, and by the time the beliefs propagate to the 
highest level, each node in the system represents a belief that is 
mutually consistent with all the other nodes. The highest level 
nodes show what highest level causes are most consistent with 
the inputs at the lowest levels. 
 
There are several advantages to doing inference this way. One is 
that ambiguity gets resolved as beliefs ascend the hierarchy. As 
an example, imagine a network with three nodes, a parent node 
and two children nodes. Child node A believes with 80% 
certainty that it is seeing a dog and with 20% certainty that it is 
seeing a cat. Child node B believes with 80% certainty that it is 
hearing a pig squeal and with 20% certainty that it is hearing a 
cat meow. Parent node C decides with high certainty that a cat is 
present and not a dog or pig. It chose cat because this belief is 
the only one that is consistent with its inputs. It made this choice 
even though “cat” image and “cat” sound were not the most 
likely beliefs of the child nodes. 
 
Another advantage of hierarchical BP is that it is possible to 
make large systems that settle rapidly. The time it takes for an 
HTM to infer its input increases linearly with the number of 
levels in the hierarchy. However, the memory capacity of the 
HTM increases exponentially with the number of levels. HTM 
networks can have millions of nodes, yet still have the longest 
path be short, say five or ten steps. 
 
We already have seen that many types of inference, such as 
hearing and touch, require time-changing patterns. Because basic 
belief propagation has no way of handling time-varying data, the 
concept of time must be added to do inference in these domains. 
It turns out that time is also needed to make a network self-
training, even for problems such as static visual inference which 
at first doesn’t seem to require time. The need to incorporate 
time will be explained in more detail later. An HTM network 
needs to be exposed to time-varying input, and it needs to store 
sequences of patterns for it to learn and solve most inference 
problems. 
 
HTMs and Bayesian networks are both types of “graphical 
probability models”. You can think of HTMs as similar to 
Bayesian networks but with some significant additions to handle 
time, self-training, and the discovery of causes. 
 
BP also has several constraints that we don’t want to adhere to in 
HTMs. One already has been mentioned. To guarantee that the 
system doesn’t endlessly cycle or form false beliefs, BP 
prohibits loops in the network. There is evidence that for many 

types of networks, BP works even if there are loops. We believe 
this is true for HTM. In a typical HTM, each node sends its 
belief message to many other nodes (high fan out) and receives 
belief messages from many other nodes (high fan in). The high 
fan in and fan out reduce the likelihood of self-reinforcing false 
beliefs. The nodes in an HTM are also more sophisticated than 
in standard BP. Because of the coalescing and expansion of 
time-based sequences, it is difficult for a simple loop between 
several nodes to be self-reinforcing in a way that leads to false 
beliefs. 
 
BP is a very powerful concept and a key part of how HTMs 
work. You should view HTMs as large Bayesian networks 
constantly passing beliefs between nodes in an effort to reach the 
most mutually compatible beliefs. The nodes at the bottom of the 
hierarchy are mostly driven by sensory patterns which are passed 
up through the hierarchy. 
 
In an HTM, all the nodes are dynamic elements. Each node can 
use its internal memory of sequences combined with recent state 
information to predict what its next belief should be, and it 
passes these expectations down the hierarchy. In essence, each 
node can dynamically change its state based on its internal 
memory. So changes can originate anywhere in the network, not 
just at the sensory nodes. The other way that HTM nodes are 
dynamic is that the meaning of their beliefs changes through the 
learning process; as nodes discover causes, the meaning of their 
outputs change. This in turn changes the inputs to parent and 
child nodes, which also need to adjust. 
 
In summary, there are three sources of dynamic change in an 
HTM. One occurs because of the changing sensory input. The 
second occurs as each node uses its memory of sequences to 
predict what will happen next and passes this prediction down 
the hierarchy. The third happens only during training and at a 
much slower time scale. As nodes learn, they change the 
meaning of their outputs, which affects other nodes which have 
to learn to adjust their meanings as well. Whenever the state of 
the network changes, whether due to sensory changes or internal 
prediction, the network quickly settles on the set of beliefs that 
are most mutually consistent. In human terms, what occupies our 
thoughts is sometimes driven by our senses and sometimes by 
our internal predictions 
 
3.4 Hierarchical representation affords 
mechanism for attention 
The hierarchy in an HTM provides a mechanism for covert 
attention. “Covert” attention is when you mentally attend to a 
limited portion of your sensory input. Humans can attend to a 
part of a visual scene. We can limit our perceptual experience to 
a variable size area in the center of our visual field, and we can 
even attend to objects that are off the center of our visual field. 
We can similarly attend to tactile input from one hand, the other 
hand, or our tongue. 
 
Compare this to “overt” attention which is when you move your 
eyes, fingers, or body to attend to different objects. Many 
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perceptual systems need a means for covert attention, if for no 
other reason than to attend to different objects in a complex 
scene. 
 
Figure 5 illustrates the basic mechanism by which HTMs 
implement covert attention. Each node in the hierarchy sends 
beliefs to other nodes higher in the hierarchy. These connections 
are illustrated by small arrows. By providing a means to switch 
these pathways on and off, we can achieve the effect of limiting 
what the HTM perceives. The figure does not show the 
switching mechanism but highlights the active connections and 
nodes. The belief at the top of the hierarchy will represent the 
causes in a limited part of the input space. 
 

                          
There are several possible ways these switches could be 
activated. At this time, we have verified that the basic principle 
works. Biology suggests there are several ways to do this 
including a bottom up method where strong unexpected patterns 
will open the pathway for attention, and a top down method 
driven by expectation. Further, it appears that in human brains, 
part of the pathway up the hierarchy is switchable for attention 
and part of it isn’t. Methods for switching covert attention in 
HTMs are being developed and tested. 
 
In this section, we have covered the major reasons why the 
hierarchical design of HTMs is essential. 
 

1)  Shared representations reduce memory requirements 
and training time. 

2)  The hierarchical structure of the world (in space and   
time) is mirrored by the hierarchical structure of the 
HTM. 

3)  Belief propagation-like techniques ensure the network 
quickly reaches the best mutually consistent set of 
beliefs. 

4)  The hierarchy affords a simple mechanism for covert   
attention. 
 

Now we are ready to turn our attention to how the individual 
nodes in an HTM work. Recall that each node has to discover 
causes and perform inference. Once we cover what nodes do and 
how they do it, we will have covered the basics of how HTMs, 
as a whole, discover causes and how they infer the causes of 
novel input. 
 

4. How does each node discover and infer 
causes? 
 
A node in an HTM doesn’t “know” what it is doing. It doesn’t 
know if its inputs represent light, sonar, economic data, words, 
or manufacturing process data. A node also doesn’t know where 
in the hierarchy it is situated. So how can it self-learn what 
causes are responsible for its input? The answer is simple in 
theory, but a little complicated in practice. 
 
Recall that a “cause” is just a persistent or recurring structure in 
the world. So a node wants to assign causes to recurring patterns 
in its input. There are two basic types of patterns, spatial 
patterns, and temporal patterns. Suppose a node has one hundred 
inputs and two of those inputs, i1 and i2 become active at the 
same time. If this happens often enough (far greater than by 
chance), then we can assume that i1 and i2 share a common 
cause. This is just common sense. If things occur together often, 
we can assume they have a common cause someplace out in the 
world. Other common spatial patterns might involve a dozen 
inputs that occur together. Let’s say a node identifies the fifty 
most common spatial patterns found in its input. (There is no 
need to, nor is it possible to, enumerate “all” spatial patterns 
seen by the node). When a new and novel input pattern arrives, 
the node determines how close the new pattern is to the 
previously learned 50 patterns. The node assigns a probability 
that the new pattern matches each of the 50 known patterns. 
These spatial patterns are the quantization points discussed 
earlier. 
 
Let’s label the learned spatial patterns sp1 thru sp50. Suppose the 
node observes that over time sp4 often follows sp7, and it does 
so far greater than chance would allow. Then the node can 
further assume the temporal pattern sp7 - sp4 has a common 
cause. This is also common sense. If patterns repeatedly follow 
each other in time, then they are likely to share a common cause 
somewhere out in the world. Assume a node stores the 100 most 
common temporal sequences. The likelihood that each of these 
sequences is active is the output of the node. Those 100 
sequences represent the 100 causes this node has learned. 
 
Here then is what nodes in an HTM do. At every point in time, a 
node looks at its input and assigns a probability that this input 
matches each element in a set of commonly occurring spatial 
patterns. Then the node takes this probability distribution and 
combines it with previous state information to assign a 
probability that the current input is part of a set of commonly 
occurring temporal sequences. The distribution over the set of 
sequences is the output of the node and is passed up the 
hierarchy. Finally, if the node is still learning, then it might 
modify the set of stored spatial and temporal patterns to reflect 
the new input. 
 
Let’s look at a simple example from vision for illustration. 
Figure 6a shows input patterns that might be seen by a node in 
the first level of a hypothetical visual HTM. This node has 16 

Figure 5 
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inputs representing a 4x4 pixel patch in a binary image. The 
figure shows several possible patterns that might appear in this 
patch of pixels. Some of these patterns are more likely than 
others. You can see that patterns which might be part of a line or 
corner will be more likely than patterns that look random. 
However, the node doesn’t know it is looking at a 4x4 pixel 
patch and has no designed-in knowledge of what patterns are 
common and what they might “mean”. All it sees is 16 inputs 
that have values between 0 and 1. It will look at its inputs over a 
length of time and try to determine which patterns are the most 
common. It stores representations for the most common patterns. 
The designer of the HTM designates the number of spatial 
patterns, or quantization points, this node can represent. 
 

 
 
Figure 6b shows three sequences of spatial patterns that might be 
seen by our low-level visual node. The first two rows of patterns 
are sequences that will likely be common. You can see they 
represent a line moving from left to right and a corner moving 
from upper left to lower right. The third row is a sequence of 
patterns that is unlikely to be seen by this node. Again, the node 
has no way of knowing which sequences will be likely, nor what 
the sequences mean. All it can do is try to learn the most 
common sequences. 
 

 
 
Not illustrated in the visual example above is another common 
(but not always necessary) function of a node. If the HTM is 
making predictions, it uses its sequence memory to predict what 
spatial patterns are likely to happen next. This prediction, in the 
form of a probability distribution over the learned spatial 
patterns, is passed down the hierarchy to the child nodes. The 
prediction acts as a “prior” biasing the lower level nodes. 
 

In summary, we can say that each node in an HTM first learns to 
represent the most commonly occurring spatial patterns in its 
input. Then it learns to represent the most commonly occurring 
sequences of those spatial patterns. The node’s outputs going up 
the hierarchy are variables that represent the sequences, or more 
precisely, the probability those sequences are active at this 
moment in time. A node also may pass predicted spatial patterns 
down the hierarchy. 
 
So far we have dealt with the simple explanation of what a node 
does. Now we will discuss some of the options and challenges. 
 
Handling distributions and real-world data 
The example patterns in the previous figures are not realistic. 
Most nodes will receive more than 16 inputs, and consequently 
the input patterns seen by a node looking at real world data will 
be larger, messier, and will almost never repeat. In addition, the 
inputs are generally graded probabilities, not binary. Therefore, 
the node has to be able to decide what the most common spatial 
patterns are without ever seeing any particular pattern twice and 
without seeing “clean” patterns. 
 
A similar problem exists for learning temporal patterns. A node 
has to determine the most common sequences of spatial patterns 
but has to do so looking at distributions of spatial patterns. It will 
never see clean data as shown in Figure 6b. 
 
The fact that a node always sees distributions means it is 
generally not practical to simply enumerate and count spatial and 
temporal patterns. Probabilistic techniques must be used. For 
example, the idea of a sequence in an HTM is generally not as 
clean as the sequence of notes in a melody. In a melody, you can 
state exactly how long the sequence is and how many elements 
(notes) it contains. But for most causes in the world, it is not 
clear when a sequence begins or ends, and there are possible 
branchings at many elements. An analogy would be walking the 
streets of a familiar town. The path you take is a sequence of 
events. However, there is not a set path through the town. The 
“sequence” of streets in the town can vary as you can turn right 
or left at each intersection. Also, there isn’t an obvious 
beginning or end to the sequence. Yet when you are anywhere in 
the town, you know it. As you walk the streets, you are confident 
you are in the same town. 
 
Another problem presents itself when learning sequences. To 
form sequences, the node has to know when new spatial patterns 
arrive, that is, when the sequence elements occur. For example, 
when listening to a melody each new note has a sudden onset 
which clearly marks the beginning of a new spatial pattern. The 
melody is a sequence of spatial patterns where each pattern is 
marked by the onset of a new note. Some sensory patterns are 
like melodies, but many are not. If you slowly rotate an object 
while looking at it, there isn’t a clear concept of when a new 
spatial pattern has arrived. Nodes in an HTM have to decide 
when the change in the input pattern is sufficient to mark it as a 
new event. 
 

Common sequence: 
assign to cause 
 

 

time 

 

Common sequence: 
assign to cause 
 

 Uncommon sequence: 
ignore 
 

 

Figure 6b 

Common patterns: 
remember 
 

 

Uncommon patterns: 
ignore 
 

 Figure 6a 
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There is much prior art on how to learn spatial patterns with 
messy real world data. Some of these models try to precisely 
model parts of the visual cortex. There is less prior art on 
learning sequences from distributions, at least not in ways that 
will work in an HTM. 
 
Numenta has developed and tested several algorithms that solve 
these problems. However, we believe that the algorithms, 
specifically those for learning sequences, will be under 
development for many years. There also may be variations of the 
algorithms, each suited to a particular sensory input or problem 
space. 
 
Fortunately, most designers of HTM-based systems need not 
understand the details of these algorithms. They can specify the 
size of the nodes, the dimensions of their inputs and outputs, and 
the overall HTM configuration, without worrying about the 
details of the learning algorithms within the nodes. However, we 
anticipate some people, especially early on, will want to 
understand these algorithms and perhaps modify them. Numenta 
realizes we need to extend the algorithms for future uses and 
other researchers will want to do the same. They may want to 
improve their performance, experiment with variations, and 
modify the algorithms to tune them to particular types of 
problems. To facilitate this, Numenta will make the source code 
for our algorithms available. Numenta’s software platform is 
designed to easily plug in new algorithms. We believe HTMs 
will work as long as the node’s learning algorithm performs 
some variation of spatial quantization and sequence learning, 
and there may be many ways to achieve these functions. 
 
Next we will address why time-varying inputs are necessary for 
learning. 

5. Why is time necessary to learn? 
 
Earlier we stated that an HTM could infer causes of “static” 
sensory patterns; the prime example being vision. (You can 
recognize images when they are flashed in front of your eyes.)  
However, we also stated that time-varying inputs are necessary 
to learn. Even a static vision system must be presented with a 
motion picture image of objects moving about in the visual field 
for it to learn properly, to discover causes. Why does learning 
require time-varying input? 
 
We already have provided part of the answer to this question. 
Because each node learns common sequences of patterns, the 
only way a node can do this is if it is presented with sequences 
of patterns over time. It may be obvious that the only way to 
understand language, or music, or touch is by learning and 
recognizing sequences. However, what about static vision? Why 
would we need to train an HTM with moving images if, in the 
end, all we want to do is recognize static images? Also, what 
does a node do with a static pattern if it has memorized 
sequences? It is the answers to these questions we want to 
discuss now. 
 
At the most basic level, pattern recognition entails assigning 
unknown input patterns to one of a number of categories. Say we 
have a vision system that can recognize 1,000 objects, or 
categories. There are an almost unlimited number of possible 
images we can show to our system and we hope that it will 
assign each unknown image to the correct category. If “horse” is 
one of the categories our system can recognize, there are many 
billions of visual patterns that you would immediately see as 
“horse”. We want our vision system to do the same. 
 
Therefore, pattern recognition is a “many-to-one” mapping 
problem. Many input patterns get mapped to each category. We 
will introduce a new term to describe many-to-one mapping: 
“pooling”. Pooling means assigning multiple patterns to one 
label, that is putting them in the same pool. 
 
Every node in an HTM must perform pooling if the hierarchy as 
a whole is to infer causes. Each node has to pool inputs even 
when just recognizing spatial patterns. We already have seen 
two mechanisms for pooling, although we didn’t label them as 
such. Spatial quantization is a pooling mechanism based on 
spatial similarity. In this case, we take an unknown pattern and 
determine how close it is to each quantization point. Two 
patterns that sufficiently “overlap” are considered the same.  So, 
many possible input patterns are pooled into each quantization 
point. This form of pooling is a weak one and not sufficient on 
its own to solve most inference problems. The second pooling 
method is the learning of sequences. Here a node maps many 
quantization points to a single sequence. This method of pooling 
is more powerful because it allows arbitrary mappings. It allows 
a node to group together different input patterns that have no 
spatial overlap. It permits arbitrary many-to-one mappings. 
 
Consider, for example, recognizing the image of a watermelon. 
The outside of a watermelon does not look at all like the inside 
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of a watermelon. Yet if you were to see two images, one of the 
outside of a watermelon and one of the inside of a watermelon, 
you would identify both as a watermelon. There is no significant 
“spatial” overlap between the two images or even parts of the 
images, so it is in a sense an “arbitrary” mapping. How does the 
HTM “know” these two input patterns represent the same thing? 
Who tells it that input pattern A and input pattern B, which are 
completely different, should be considered the same? The 
answer is time. If you hold a cut watermelon in your hand and 
move it about, turn it over, and rotate it etc. you will see a 
continuous flow of patterns, which will progress from seeing the 
outside of the watermelon to seeing the inside of the watermelon 
to everything in between. The ultimate cause, “watermelon”, 
persists over time as the input patterns change. 
 
Of course no node in the HTM remembers this entire sequence. 
Nodes at the bottom of the hierarchy learn sequences that are 
fairly short, dictated by the small area of the input pattern they 
can see. Nodes at the next level are more stable. They learn 
sequences of the sequences at the bottom level. Stability 
increases as patterns ascend the hierarchy. With sufficient 
training you will find the output of the highest level in the 
hierarchy remaining stable for the duration of the input 
sequence. Each node in the hierarchy does spatial pooling and 
temporal pooling. Without temporal pooling (i.e. the learning of 
sequences) it would be impossible for the HTM to learn on its 
own that the outside of a watermelon and the inside of a 
watermelon share a common cause. 
 
This argument holds for almost all possible high level causes in 
the world, whether they are inherently temporal (such as speech, 
music, and weather) or whether they can be inferred statically 
(such as vision). Thus, time-varying inputs are necessary to learn 
the causes in the world. 
 
Before we go on to discuss how an HTM can recognize a static 
image, we need to take a digression and discuss a problem with 
the above argument. There are situations where even with 
temporal pooling, an HTM may have difficulty learning the 
common cause of different inputs, at least not without some 
help. 
 
The role of supervision 
Suppose you were shown pictures of food and asked to identify 
each picture as either a “fruit” or a “vegetable”. If shown an 
apple or an orange, you say “fruit”. If shown a potato or an 
onion, you say “vegetable”. How did you learn that apple and 
orange are both in the same category? You never held an apple 
in your hand that turned into an orange as you moved it. It 
doesn’t seem possible for an HTM to learn on its own, using 
spatial and temporal pooling, that apples and oranges are to be 
grouped in the same category. 
 
The problem just described, of learning “fruits” from 
“vegetables”, is clear, but the same problem can occur for 
situations like the watermelon. It isn’t guaranteed that an HTM 
will always learn the desired causes by sensing sequences of 
input patterns. For example, what if our HTM was first trained 

on insides of watermelons, then on outsides of watermelons? It 
would naturally assign these separate patterns to two different 
causes. Subsequently, we train the HTM on cut watermelons 
where it is shown sequences moving from the inside to the 
outside. It is possible that the HTM will form a higher level 
cause (watermelon) that represents the pooling of the two lower 
level causes (inside red thing becoming outside green thing). 
Then again, it might not. It depends on the design of the 
hierarchy, how you train the HTM, and the statistics of the input. 
If it takes a long time to transition between the inside and 
outside views, or if there are many intermediate steps, the HTM 
might not pool causes as you would hope. Humans suffer the 
same problem when learning things like what are fruits, or who 
are impressionist painters. It isn’t always obvious from the 
sensory data. 
 
The solution to this class of problem is straightforward. Learning 
correct categorization, that is learning the correct causes, can be 
made much faster and more certain by supervising the training. 
In an HTM, this is done by imposing a prior expectation on the 
top level node(s) in the hierarchy during learning. This process is 
analogous to a parent saying “fruit”, “vegetable”, or 
“watermelon” as you play with your food. You might discover 
on your own that some foods have seeds and others don’t, and 
therefore discover the category we call “fruit”, but it will be 
faster and more certain if someone just tells you this fact. 
 
A parent speaking a word such as “fruit” causes a stable pattern 
at the top of the auditory hierarchy (this pattern is the cause 
representing the sound of the word). This stable pattern is then 
imposed on top of the visual hierarchy making it easy to form 
the desired categorization of visual input. 
 
In an HTM, we can simply impose states at the top level(s) of 
the hierarchy as we train. 
 
For some HTM applications, it is best to supervise training and 
for others it is best not to supervise. For example, if we have an 
HTM that is trying to discover high-level causes of stock market 
fluctuations, we probably don’t want to impose our prior beliefs 
on the system. After all, the goal of this system is to discover 
causes humans have not discovered already. Alternately, if we 
have an HTM that is being used to improve safety in a car by 
looking at nearby traffic, it might make sense to supervise the 
training on what are dangerous situations and what aren’t, as 
opposed to letting it discover these on its own. 
 
Inference with static images 
Now we can address the last question for this section. Say we 
have an HTM-based vision system. We train it with time-
varying images. It forms representations of causes, either on its 
own or with supervision. Each node in the hierarchy pools 
spatial patterns in sequences. Now when a static image is 
presented to the system, how does it infer the cause of the 
image? Specifically, given that the HTM has memory of 
sequences of patterns, how does it infer the correct causes when 
it only sees a static input? 
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The answer is straightforward. When the static image is 
presented to the bottom nodes of the hierarchy, the nodes form a 
distribution over the spatial quantization points and from this 
they form a distribution over the learned sequences. With no 
temporal data to work with, the distribution over the sequences 
will be broader than it would be if temporal data were available. 
However, the node will form a distribution over the sequences in 
either case. The Belief Propagation techniques of the hierarchy 
will try to resolve the ambiguity of which sequences are active. 
It turns out that in vision, it is often possible to do so. That is, 
with vision, the low-level ambiguity resultant from not having 
temporal sensory data can still be resolved (via Belief 
Propagation) as the data ascends the hierarchy. If the image is 
sufficiently unambiguous, the top of the hierarchy is certain 
what cause(s) it is seeing. 
 
This is not always the case. You can imagine a wooded scene 
within which is hidden a camouflaged animal. When shown this 
scene, you don’t see the animal. However, if the animal moves, 
even a little bit, relative to the background, the percept of the 
animal jumps out. In this case, the added movement information 
tightens the distribution over sequences in the lower levels of the 
hierarchy, which is sufficient to resolve the ambiguity of the 
input. In fact, taking this idea to the extreme, it is possible to 
present a completely random field of black and white pixels, and 
by moving a subset of these random pixels in a coordinated way 
produce an “image”. The spatial pattern is always random at 
every point in time but you still see an image because of the 
movement of the pixels. 
 
The representation of time 
For some temporal patterns, the specific or relative time between 
the elements in the sequence is important. For example, the 
times between notes in a melody or the times between phonemes 
in spoken words, are an important part of these causes. 
Biological brains have the ability to learn sequences with or 
without specific timing information. If there are consistent time 
intervals in a sequence, the brain will learn them. If there are no 
consistent time intervals in a sequence, the brain will store the 
sequence without time. In the book On Intelligence, a proposal 
was made as to how the brain stores this timing information. 
HTMs need equivalent mechanisms to discover and infer causes 
that require specific timing information. Fortunately, many 
applications do not require this. 
 
At this point, we have covered most of the concepts of HTMs. 
The next section provides answers to some commonly asked 
questions about HTM technology.  

6. Questions 
 
This section contains some common questions about HTMs and 
a few miscellaneous topics that have not yet been covered. It is 
not essential to know this material to deploy HTM-based 
systems, although it might clarify some of the topics already 
discussed. The order of the questions is not meaningful. 
 
How does motivation and emotion fit into the 
theory of HTM? 
A common question we hear is, “There seems to be no role for 
emotion and motivation in HTMs. How can the HTM know 
what is important and what is not?” 
 
In biological brains, there are several systems involved in 
evaluating the emotional saliency of different situations. These 
emotional centers are highly-evolved sub-systems that are tuned 
for their task. They are not located in the neocortex. As a general 
rule, these emotional sub-systems communicate with the 
neocortex in a fairly simple way. They send signals that spread 
broadly throughout the entire neocortex. These signals are 
related to rates of learning and arousal. It is as if the sub-systems 
are saying, “I will evaluate the emotional saliency of the current 
situation and when I see something important, I will tell you, the 
neocortex, to remember it.”  
 
HTM-based systems need a similar learning control signal. Most 
of the time, it will be as simple as the designer of the system 
deciding when the HTM should be learning and at what rate. A 
visual inference HTM might be trained in the laboratory under 
ideal conditions and later deployed with no ability to learn 
further. Some applications might have an automatic learning 
saliency system, such as a car that automatically turns on 
learning when the brakes are applied hard. So even though 
HTM-based systems have no emotions per se, the functional role 
of emotions related to the neocortex can be easily met. 
 
What happened to the CPTs? When and how are 
they trained? 
Recall that Bayesian networks send belief messages between 
nodes. Further recall that CPTs (Conditional Probability Tables) 
are two-dimensional memory matrices that convert a belief in 
one node into the dimension and language of the belief in 
another node. The CPT allows the belief at one node to modify 
the belief at another node. Earlier we illustrated CPTs with the 
example of nodes representing temperature and precipitation. 
After that, we didn’t explain how the CPTs were learned. 
 
Well, we did, but in different language. In an HTM, the CPTs 
used in passing information from node to node going up the 
hierarchy are formed as a result of learning the quantization 
points. The quantization function itself is the CPT. By contrast, 
in a traditional Bayesian network the causes at each node would 
be fixed, and the CPT would be created by pairing instantaneous 
beliefs between two nodes. We can’t do this in HTMs because 
the causes represented by each node are not fixed and have to be 
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learned. Learning the quantization points is in essence a method 
of creating a CPT on the fly.  
 
The CPTs that pass messages down the hierarchy between two 
nodes can be learned in the traditional way once two nodes have 
been trained. It also may be possible to use a transposed version 
of the feed-forward CPT as the feedback CPT. 
 
There is one more difference in the CPTs as implemented in an 
HTM vs. a traditional Bayesian network. In a traditional 
Bayesian network, if three child nodes project up to a single 
parent node there would be three separate CPTs, one between 
each child and the parent. Biology suggests brains don’t do it 
this way. In a brain, the messages from all the child nodes are 
mixed together resulting in a single CPT/quantization function. 
There are reasons to believe the biological method is superior. 
This is the method Numenta has implemented in its HTM 
framework. 
 
Why are the number of spatial patterns and 
temporal sequences in each node fixed? 
There are two basic approaches one can take to learning spatial 
and temporal patterns in a node. The first approach is to look at 
the incoming patterns and enumerate them. For example, when 
defining spatial quantization points you could incrementally 
build a list of quantization points as you see new inputs. If a new 
input is not close to a previously seen input, you create a new 
quantization point. If it is close enough to a previously seen 
input, you assume it is the same and don’t create a new 
quantization point. Over time, you build a longer and longer list 
of spatial quantization points. The same approach could be used 
for learning sequences. You could dynamically build a longer 
and longer list of sequences as new inputs arrive. 
 
The second approach is to start with a fixed number of spatial 
quantization points and a fixed number of sequences. Initially, 
they have random meanings. As inputs arrive at the node you 
modify the definition of the existing quantization points and 
sequences.  For example, you would take a new input and decide 
which of the initially random quantization points the new input 
is closest too. Then you would modify this quantization point to 
“move” it closer to the new input. You have to do this gradually 
because other nodes in the network are dependent on the output 
of the first node. If you rapidly changed the meaning of a 
quantization point or a sequence, the other nodes would be 
confused. 
 
At Numenta, we have experimented with both of these methods. 
It is possible that both can work. We are currently focused on the 
latter method for a few reasons. First, we believe that the 
biological neocortex uses this method. Therefore, we are certain 
it can work for the range of problems humans can solve. Another 
reason is that by sticking to a fixed number of quantization 
points and a fixed number of sequences in each node, all 
learning in the system is restricted to gradual changes. The 
meanings of the causes at each node change slowly over time, 
and although other nodes need to adjust accordingly, nothing 
happens dramatically. The dimension of the inputs, outputs, and 

therefore the dimensions of the CPTs are all fixed; only the 
values in the memory matrices change. 
 
Using the method where the number of quantization points and 
the number sequences can vary, at first seems easier, but it can 
lead to difficulties as the dimensions of inputs and outputs 
change. 
 
How are temporal patterns represented? 
A common question is how long are the sequences that are 
stored in a node? Again, there are two basic ways you can 
approach this problem; one is to fix the length of sequences and 
the other is to make the sequence length dynamic. In this case, 
biology uses dynamic length sequences and Numenta has chosen 
to emulate that method, although this isn’t necessarily a 
requirement. To give you a sense of how this works we will use 
a music analogy. 
 
Imagine our node has twelve quantization points, each one 
corresponding to the twelve notes in a musical octave. As inputs 
come into the node, each of these twelve quantization points 
become active corresponding to what note is being played. 
 
Next we assign ten variables to each quantization point. There 
are ten “C’s”, ten “D’s”, and ten “A flats”, etc. for a total of 120 
variables. Each of these variables represents its particular note at 
one location in one sequence. The node can learn any number of 
sequences and the sequences can be any length, with the 
restriction that the node only has ten of each note to work with. 
At one extreme, the node could learn one sequence of 120 notes 
long, where each note is used exactly ten times. At the other 
extreme, it could learn sixty sequences of length two. But no 
matter how many sequences it learns and no matter what the 
length of any individual sequence, it only has ten of each note 
available. 
 
It is more complicated than this, but this analogy gives the basic 
flavor of how we believe neocortex stores sequences and of the 
approach currently favored by Numenta. 
 
HTMs are built of discrete regions, but biological 
brains are more continuous. What is the 
difference? 
So far, HTMs have been described as a hierarchical collection of 
discrete nodes. The use of discrete nodes is common to Bayesian 
networks and indeed to all graphical probability models. 
 
However, biology suggests brains don’t work this way. In an 
HTM, the bottom of the hierarchy is a collection of many small 
nodes; in a brain the bottom of the hierarchy is one continuous 
region of cortex. 
 
Obviously, nature’s approach works just fine. However, we 
don’t yet have the mathematical tools to understand continuous 
models as well as we can discrete models. At Numenta, we have 
so far stayed with the discrete node approach. We have 
demonstrated that this approach works and are studying whether 
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it can be made to perform as well as the continuous approach. 
We ultimately expect to move to a continuous model. 
 
HTMs model the world. But in doing so they don’t 
remember specific details and events. Humans 
have the ability to remember some specifics. How 
can this be done in HTM-based systems? 
HTMs as described in this paper and as implemented so far by 
Numenta do not have the ability to remember specific events. 
HTMs actually throw away the details in an effort to build a 
model of the world. For example, if you trained an HTM-based 
visual system to recognize dogs, it won’t remember any of the 
specific visual images of dogs it was trained on. There might be 
millions of patterns the HTM was trained on and none are 
remembered in detail. The process of discovering causes in the 
world is one of learning the “persistent” structure in the world, 
not one of learning any particular pattern that was only seen 
once. 
 
However, humans do remember specific unitary events, 
especially if the event was emotionally salient. If something 
particularly bad or particularly good happens, you are likely to 
remember the details of it for a long time. For example, you 
almost certainly can’t remember what you ate for lunch three 
weeks ago. However, if during that lunch you became very ill, or 
something bizarre happened to you, you might remember details 
of the lunch for the rest of your life. 
 
In biological brains, the hippocampus is strongly implicated in 
forming these “episodic” memories. We believe we understand 
enough about the relationship between the hippocampus and the 
neocortex to create an equivalent “episodic” memory as an 
adjunct to HTMs. At this time, we are continuing to consider this 
capability and ultimately expect to add it to HTMs. 
 
What does the fovea do and do HTM-based 
systems need one? 
Light falling on the retina at the back of the eye forms an 
inverted but otherwise undistorted image on the retina. However, 
the light receptor cells in the retina have a non-uniform 
distribution. There is a high concentration of these cells in the 
center of the retina, called the fovea, leading to a distorted 
representation of the image in the optic nerve and ultimately at 
the first level of the cortical hierarchy. As objects move in the 
world and as our eyes move, the severe distortion caused by the 
fovea appears in different parts of the visual scene. 
 
It is surprising that our visual percept of the world has no 
evidence of this distortion. The theory behind HTMs explains 
why this is so. Like brains, HTMs form high-level 
representations that are invariant to distortion of their input. 
HTMs form high-level representations of the world as the world 
really is, not as it is sensed. The patterns arriving from the senses 
are not what we ultimately care about. It is the persistent causes 
in the world that we care about and that are discovered and 
represented by the HTM. A blind person and a deaf person form 
nearly identical models of the world even though they have 

completely different sensory systems.  They discover the same 
causes through completely different sensory patterns. The low-
level sensory data are just a means of discovering the causes in 
the world. Different senses, and distorted senses, all will suffice 
as long as they sufficiently sample the causes we care to learn. 
 
The question we want to consider is not how recognition occurs 
despite the fovea. That is just a consequence of how HTMs 
work. The question of interest is, are foveal-type mechanisms 
valuable and should the principle be applied to HTM-based 
systems? 
 
The fovea acts like an attention mechanism. Whatever is in the 
center of the visual field is over-represented and likely to be 
represented at the top of the visual hierarchy. Moving the eyes, 
in conjunction with the covert attention mechanism described 
earlier, allows fine detail in a scene to be perceived. You can 
think of it like a zoom lens on a camera. 
 
In theory, if the entire retina had a density of receptor cells 
equivalent to the fovea then there would be less need to move 
the eyes. Perception of fine detail could be achieved with just 
covert attention. However, this would take a lot more cortex and 
more memory. So ultimately the fovea is a means of saving 
resources, while maintaining high acuity. 
 
The same principle will probably be useful in some HTM 
applications. For example, an HTM-based system that learns 
about weather could have a sensory array that samples data from 
weather stations spread across a territory. This information could 
be presented to the HTM in a two-dimensional array. However, 
there could be a region of the sensory array that samples weather 
stations that are closer together. This is equivalent of a fovea. By 
repositioning this region of high acuity, the HTM would be able 
to focus on the weather detail in a particular area. Many HTM-
based systems could use a similar approach. 
 
To date, Numenta, while having thought about these ideas, has 
not tested all of them. It is an interesting area for 
experimentation. 
 
Are there ethical issues to be considered with 
HTMs? 
For several years, we have discussed and explored the question 
of whether HTMs present any ethical dilemmas. We have 
consistently reached the unequivocal conclusion that HTMs do 
not pose any unusual ethical concerns. They present similar 
upside and similar potential for misuse as many other 
technologies such as computers or the internet. This subject is 
discussed in more depth in the book On Intelligence. 
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7. Summary and Conclusion 
 
HTMs capture the algorithmic and structural properties of the 
neocortex, and as such, present the first opportunity to solve 
many previously unsolved problems in pattern recognition and 
machine intelligence. An easy way to think about HTMs is that 
they are suitable for tasks humans find easy to do yet computers 
find hard to do. However, the algorithmic properties of HTM are 
very flexible, and therefore, once understood, also can be 
applied to many problems outside of human ability. 
 
Capabilities 
The foremost capability of HTM technology is its ability to 
discover the causes underlying sensory data. Causes are 
persistent and recurring structures in the world. The concept of 
“cause” captures everything from language, to physical objects, 
to ideas, to the laws of physics, to the actions of other people. 
Like humans, HTMs can learn to model all these things and 
more. By attaching an HTM to one or more senses, the HTM 
gradually and automatically builds internal representations of the 
causes in its world. This learning phase requires repeated 
exposure to sensory input over time. Causes must persist during 
training. 
 
There is a hierarchy of causes in the world coexistent at any 
point in time, and HTMs build a corresponding hierarchy of 
representations. The instantaneous value of one of these 
representations is called a belief. 
 
The representations formed at the top of the hierarchy are of the 
highest level causes. These high-level causes are ones that 
persist over the longest periods of time, and can span the entire 
sensory input space. Causes represented lower down in the 
hierarchy span shorter periods of time and smaller areas of the 
input space. 
 
Discovering causes is a requisite first step towards later 
recognition, but for many applications it is an end in itself. 
 
After discovering causes, HTMs can rapidly infer the causes 
underlying novel inputs. Inference is similar to “pattern 
recognition”. When an HTM sees a novel input, it determines 
not only the most likely high-level cause(s) of that input, but 
also the hierarchy of sub-causes. Designers of HTM-based 
systems can query the HTM to see what is being recognized 
 
Each node in the network can use its memory of sequences to 
predict what should happen next. A series of predictions is the 
basis of imagination and directed behavior. 
 
HTMs can perform several types of attention. Covert attention 
can be achieved by selectively disabling pathways in the 
hierarchy; this allows the HTM to attend to a subset of its entire 
input. Attentional priming can be achieved by setting a desired 
belief at the top of the hierarchy; this implements a directed 
search. Overt attention involves manipulating objects via 
behavior. 

 
Technology 
Technically, HTMs can be considered a form of Bayesian 
network where the network consists of a collection of nodes 
arranged in a tree-shaped hierarchy. Each node in the hierarchy 
self-discovers a set of causes in its input through a process of 
finding common spatial patterns and then finding common 
temporal patterns. Unlike many Bayesian networks, HTMs are 
self-training, have a well-defined parent/child relationship 
between each node, inherently handle time-varying data, and 
afford mechanisms for covert attention. 
 
Sensory data is presented at the “bottom” of the hierarchy. To 
train an HTM, it is necessary to present continuous, time-
varying, sensory input while the causes underlying that sensory 
data persist in the environment. That is, you either move the 
senses of the HTM through the world, or the objects in the world 
move relative to the HTM’s senses. 
 
Inference also is performed with time-varying input, although in 
some cases, such as vision, it is possible to perform inference 
tasks with static sensory input. 
 
During inference, information flows up the hierarchy starting at 
the lowest level nodes closest to sensory input. As the 
information rises up the hierarchy, beliefs are formed at 
successively higher nodes, each representing causes over larger 
and larger spatial areas and longer and longer temporal periods. 
 
Belief propagation-like techniques lead all nodes in the network 
to quickly reach beliefs that are consistent with the bottoms-up 
sensory data.  Top-down predictions can influence the inference 
process by biasing the network to settle on predicted causes. 
 
HTMs are memory systems.  By this we mean that HTMs must 
learn about their world. You sometimes can supervise the 
learning process but you can’t program an HTM. Everything an 
HTM learns is stored in memory matrices at each node. These 
memory matrices represent the spatial quantization points and 
sequences learned by the node. 
 
Being a new technology, there are many advances ahead in our 
understanding of HTMs. For example, we need to improve our 
ability to measure and define the capacity of an HTM. We need 
to develop useful heuristics for how best to specify hierarchies to 
match particular problems. We have a lot to do in order to 
improve our training methods. And although we have developed 
algorithms for spatial quantization and time-based pooling, we 
are certain they can and will be improved. There will be many 
years of advances and refinements as we learn how to use this 
technology. 
 
The first implementation of the Numenta HTM platform is on 
standard Linux-based computers. The platform tools will run on 
anything from a single CPU to clusters with many CPUs. We 
anticipate various forms of custom hardware will ultimately be 
developed specifically for HTMs but this is not necessary today. 
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Implications 
HTM is a powerful new computing paradigm that may 
ultimately equal the importance of traditional programmable 
computers in terms of societal impact and financial opportunity. 
 
One of Numenta’s goals is to maximize the beneficial impact of 
HTM technology. The approach we are taking to achieve this is 
to create a platform that makes it easy for engineers and 
scientists to experiment with the HTM technology, develop 
HTM-based applications, and to create exciting business 
opportunities based on HTM. In addition to documenting the 
platform and tools, Numenta will make available the source code 
for many parts of the platform. This source code access should 
allow developers to better understand how Numenta’s tools 
work and provide an opportunity and financial incentive to 
extend the platform. 
 
Because HTMs model the large-scale structure and function of 
the neocortex, Numenta’s tools also should be useful in the 
fields of psychology, education, psychiatry, and neuroscience as 
a way to explore the capabilities of healthy humans and to better 
understand mental disease.  
 
We only have just started to develop this compelling new 
paradigm of intelligent computing based on HTM technology. 
We are putting in place the platform and theoretical foundation 
today. We expect to make great progress over the coming years 
in understanding the limits of HTMs, how they will scale, how 
they will perform, and what problems they will solve. 
 
Most importantly, we look forward to building a community of 
people working on this technology, and applying it to a broad 
range of challenging real-world problems. 
 
 
  
 
 


