

3/27/2007 © 2006 Numenta, Inc. 1

Hierarchical Temporal Memory

Concepts, Theory, and Terminology

Jeff Hawkins and Dileep George, Numenta Inc.

Introduction

There are many things humans find easy to do that computers
are currently unable to do. Tasks such as visual pattern
recognition, understanding spoken language, recognizing and
manipulating objects by touch, and navigating in a complex
world are easy for humans. Yet, despite decades of research, we
have no viable algorithms for performing these and other
cognitive functions on a computer.

In a human, these capabilities are largely performed by the
neocortex. Hierarchical Temporal Memory (HTM) is a
technology that replicates the structural and algorithmic
properties of the neocortex. HTM therefore offers the promise of
building machines that approach or exceed human level
performance for many cognitive tasks.

HTMs are unlike traditional programmable computers. With
traditional computers, a programmer creates specific programs
to solve specific problems. For example, one program may be
used to recognize speech and another completely different
program may be used to model weather. HTM, on the other
hand, is best thought of as a memory system. HTMs are not
programmed and do not execute different algorithms for
different problems. Instead, HTMs “learn” how to solve
problems. HTMs are trained by exposing them to sensory data
and the capability of the HTM is determined largely by what it
has been exposed to.

HTMs are organized as a tree-shaped hierarchy of nodes, where
each node implements a common learning and memory function.
HTMs store information throughout the hierarchy in a way that
models the world. All objects in the world, be they cars, people,
buildings, speech, or the flow of information across a computer
network, have structure. This structure is hierarchical in both
space and time. HTM memory is also hierarchical in both space
and time, and therefore can efficiently capture and model the
structure of the world.

HTMs are similar to Bayesian Networks; however, they differ
from most Bayesian Networks in the way that time, hierarchy,
action, and attention are used. HTMs can be implemented with
software on traditional computer hardware, but it is best to think
of an HTM as a memory system.

This paper describes the theory behind HTMs, what HTMs do,
and how they do it. It describes in detail the two most important

capabilities of HTMs, the ability to discover and infer causes. It
introduces the concepts behind two other HTM capabilities,
prediction and behavior.

This paper describes the theory behind Numenta’s products, but
does not describe the products themselves. Separate
documentation describes Numenta’s products and how to apply
HTM technology to real world problems.

HTM was derived from biology. Therefore, there is a detailed
mapping between HTM and the biological anatomy of
neocortex. Interested readers can find a partial description of this
in Chapter 6 of the book On Intelligence (Times Books, 2004). It
is not necessary to know the biological mapping of HTM to
deploy HTM-based systems.

The concepts behind Hierarchical Temporal Memory are not
particularly hard, but there are a lot of them so the learning curve
can be steep. This paper is designed to be readable by any
sufficiently motivated person. We don’t assume any particular
mathematical ability. (A complete mathematical description of
the algorithms described in this paper is available from Numenta
under license.) Learning how to design an HTM-based system is
about as difficult as learning how to write a complex software
program. Anyone can learn how, but if you are starting from
scratch, there is a lot to learn.

The paper is divided into seven major sections, listed below.

1. What do HTMs do?

2. How do HTMs discover and infer causes?

3. Why is hierarchy important?

4. How does each node discover and infer causes?

5. Why is time essential for learning?

6. Questions

7. Conclusion

3/27/2007 © 2006 Numenta, Inc. 2

1. What do HTMs do?

It has been known for over twenty-five years that the neocortex
works on a common algorithm; vision, hearing, touch, language,
behavior, and most everything else the neocortex does are
manifestations of a single algorithm applied to different
modalities of sensory input. The same is true for HTM. So when
we describe what HTMs do and how they work, our explanation
will be in a language that is independent of sensory modality.
Once you understand how HTMs work, you will understand how
HTMs can be applied to a large class of problems including
many that have no human correlate.

HTMs perform the following four basic functions regardless of
the particular problem they are applied to. The first two are
required, and the latter two are optional.

1) Discover causes in the world
2) Infer causes of novel input
3) Make predictions
4) Direct behavior

We will look at each of these basic functions in turn.

1.1 Discover causes in the world
Figure 1 shows how an HTM system relates to the world. On the
left of this figure is a box representing a world the HTM is to
learn about. The world consists of objects and their relationships.
Some of the objects in the world are physical such as cars,
people, and buildings. Some of the objects in the world may not
be physical such as ideas, words, songs, or the flow of
information on a network. The important attribute of the objects
in the world from an HTM’s perspective is that they have
persistent structure; they exist over time. We call the objects in
the world “causes”. You can think of this world by asking
questions such as “what was the ultimate ‘cause’ of the pattern
on my retina” or “what was the ultimate ‘cause’ of the sound
entering my ears”. There is a hierarchy of causes active in the
world at any moment in time. While listening to spoken
language, the causes of the sound entering your ears are
phonemes, words, phrases, and ideas. These are simultaneously
active and all valid causes of the auditory input.

There is one large physical world that we all reside in. However,
a particular HTM may be only concerned with a subset of this
world. An HTM may be restricted to knowledge about financial
markets, it may only interface to weather phenomenon, or it may
only interface to and understand geophysical data, demographic
data, or data collected from sensors attached to a car. From now
on, when we refer to the “world” of the HTM, we mean the
limited part to which the HTM is exposed.

On the right side of Figure 1 is an HTM. It interfaces to its world
through one or more senses shown in the middle of the figure.
The senses sample some attribute of the world such as light or
touch, though the senses used by an HTM do not need to be the
same senses humans have. Typically the senses don’t directly
detect the objects in the world. You don’t have a “car sense” or a
“word sense”. Indeed, one of the goals of an HTM is to discover
from the raw sensory input that objects like “cars” and “words”
exist. Senses typically present an array of data to the HTM,
where each element in the array is a measurement of some small
attribute of the world. In a human, the optic nerve that carries
information from the retina to the cortex consists of about one
million fibers where each fiber carries information about light in
a small part of visible space. The auditory nerve is about thirty
thousand fibers, where each fiber carries information about
sound in a small frequency range. The senses attached to an
HTM will generally have a similar arrangement. That is, the
sensory data will be a topologically arrayed collection of inputs,
where each input measures a local and simple quantity.

All HTM systems have some type of sensory input, even if the
data is coming from a file. From an HTM’s perspective, there
are two essential characteristics of sensory data. First, the
sensory data must measure something that is directly or
indirectly impacted by the causes in the world that you might be
interested in. If you want the HTM to learn about weather, it
must sense something related to weather such as air temperature
and pressure at different locations. If the HTM is to understand
computer network traffic, it might sense packets per second and
CPU loads at routers. Second, the sensory data must change and
flow continuously through time, while the causes underlying the
sensory data remain relatively stable. The temporal aspect of
sensory data can come from movements or changes of the
objects in the world (such as a car driving by or the minute by
minute fluctuations of a stock market), or it can come from
movement of the sensory system itself through the world (as
when you walk through a room or move your fingers over an
object). Either way, the sensory data must change continuously
over time for an HTM to learn.

The HTM receives the spatio-temporal pattern coming from the
senses. At first, the HTM has no knowledge of the causes in the
world, but through a learning process that will be described
below, it “discovers” what the causes are. The end goal of this
process is that the HTM develops internal representations of the
causes in the world. In a brain, nerve cells learn to represent
causes in the world, such as a cell that becomes active whenever
you see a face. In an HTM, causes are represented by numbers in

“Beliefs”

People
Cars
Buildings
Words
Songs
Ideas

World HTM Senses

“Causes”

patterns
cause1 0.22
cause2 0.07
cause3 0.00
cause4 0.63
cause5 0.00
cause6 0.08

Figure 1

3/27/2007 © 2006 Numenta, Inc. 3

a vector. At any moment in time, given current and past input, an
HTM will assign a likelihood that individual causes are currently
being sensed. The HTM’s output is manifest as a set of
probabilities for each of the learned causes. This moment-to-
moment distribution of possible causes is called a “belief”. If an
HTM knows about ten causes in the world, it will have ten
variables representing those causes. The value of those variables
– its belief – is what the HTM believes is happening in its world
at that instant. Typical HTMs will know about many causes, and
as you will see, HTMs actually learn a hierarchy of causes.

Discovering causes is at the heart of perception, creativity, and
intelligence. Scientists try to discover the causes of physical
phenomenon. Business people seek to discover the causes
underlying markets and business cycles. Doctors seek to
discover the causes of disease. From the moment you were born,
your brain slowly learned representations for all the things you
eventually came to know. You had to discover that cars,
buildings, words, and ideas are persistent structures in the world.
Before you are able to recognize something, your brain has to
first discover that the thing exists.

All HTM systems need to go through a learning phase where the
HTM learns what the causes in its world are. All HTMs first
learn about the small and simple causes in their world. Large
HTMs, when presented with enough sensory data, can learn high
level, sophisticated causes. With sufficient training and proper
design, it should be possible to build HTMs that discover causes
humans have not been able to discover. After initial training, an
HTM can continue to learn or not, depending on the needs of the
application.

There can be much value in just discovering causes.
Understanding the high level causes for market fluctuations,
disease, weather, manufacturing yield, and failures of complex
systems, such as power grids, is valuable. Discovering causes is
also a necessary precursor for inference, the second capability of
HTMs.

1.2 Infer causes of novel input
After an HTM has learned what the causes in its world are and
how to represent them, it can perform inference. “Inference” is
similar to pattern recognition. Given a novel sensory input
stream, an HTM will “infer” what known causes are likely to be
present in the world at that moment. For example, if you had an
HTM-based vision system, you could show it pictures and it
would infer what objects are in the picture. The result would be a
distribution of beliefs across all the learned causes. If the picture
was unambiguous, the belief distribution would be peaked. If the
picture was highly ambiguous, the belief distribution would be
flat because the HTM wouldn’t be certain what it was looking at.

The current inferred beliefs of an HTM can be directly read from
the system to be used elsewhere external to the HTM (something
not possible in human brains!). Alternatively, the current belief
can be used internally by the HTM to make predictions or to
generate behavior.

In most HTM systems, the sensory input always will be novel. In
a vision system attached to a camera, there might be one million
pixels as sensory input. If the camera were looking at real world
scenes, it is highly unlikely that the same pattern would ever be
presented to the HTM twice. Thus, HTMs must handle novel
input both during inference and during training. In fact, HTMs
don’t have a separate inference mode. HTMs are always
inferring causes even while learning (albeit inferring poorly
before much training has occurred). As mentioned earlier, it is
possible to disable learning after training and still do inference.

Many HTM applications will require time-varying sensory input
to do inference, although some do not. It depends on the nature
of the sense and the causes. We can see this distinction in
humans. Our auditory and tactile senses can infer almost nothing
without time. We must move our hands over objects to infer
what they are through touch. Similarly, a static sound conveys
little meaning. Vision is mixed. Unlike touch and hearing,
humans are able to recognize images (i.e. infer causes) when an
image is flashed in front of them and the eyes do not have time
to move. Thus, visual inference does not always require time
changing inputs. However, during normal vision we move our
eyes, we move our bodies, and objects in the world are moving
too. So static, flashed picture identification is a special case
made possible by the statistical properties of vision. The general
case, even for vision, is that inference occurs with time-varying
inputs.

Even though it is sometimes possible to perform inference with a
static sensory pattern, the theory behind HTMs shows that it is
not possible to discover causes without having continuously
changing inputs. Thus, all HTM systems, even ones that do static
inference, need to be trained on time-varying inputs. It isn’t
sufficient that sensory input just changes, for this could be
accomplished with a succession of unrelated sensory patterns.
Learning requires that causes persist while the sensory input
changes. For example, when you move your fingers over an
apple, although the tactile information is constantly changing,
the underlying cause – the apple – stays constant. The same is
true for vision. As your eyes scan over the apple, the pattern on
the retina changes, but the underlying cause stays constant.
Again, HTMs are not restricted to human type sensors: changing
market data, changing weather, and dynamic traffic flow over
computer networks all would suffice.

Inferring the causes of novel input is valuable. There are many
pattern recognition problems that humans find easy but existing
computer algorithms are unable to do. HTMs can solve these
problems rapidly and accurately, just like humans. In addition,
there are many inference problems that humans have difficulty
performing that HTM-based systems can solve.

1.3 Make predictions
HTMs consist of a hierarchy of memory nodes where each node
learns causes and forms beliefs. Part of the learning algorithm
performed by each node is to store likely sequences of patterns.
By combining memory of likely sequences with current input,
each node has the ability to make predictions of what is likely to

3/27/2007 © 2006 Numenta, Inc. 4

happen next. An entire HTM, being a collection of nodes, also
makes predictions. Just as an HTM can infer the causes of novel
input, it also can make predictions about novel events. Predicting
the future of novel events is the essence of creativity and
planning. Leaving the details of how this works for later, we can
state now what prediction can be used for. There are several uses
for prediction in an HTM, including priming, imagination and
planning, and generating behavior. A few words on these uses
are warranted at this time.

Priming
When an HTM predicts what is likely to happen next, the
prediction can act as what is called a “prior probability”,
meaning it biases the system to infer the predicted causes. For
example, if an HTM were processing text or spoken language, it
would automatically predict what sounds, words, and ideas are
likely to occur next. This prediction helps the system understand
noisy or missing data. If an ambiguous sound arrives, the HTM
will interpret the sound based on what it is expecting.

In an HTM, we have the ability to set prior probabilities
manually in addition to having prior probabilities set via
prediction. That is, we can manually tell the HTM to anticipate
or look for a particular cause or set of causes, thus implementing
a directed search.

Imagination and Planning
HTMs automatically predict and anticipate what is likely to
happen next. Instead of using these predictions for priming, an
HTM’s predictions can be fed back into the HTM as a substitute
for sensory data. This process is what humans do when they
think. Thinking, imagining, planning the future, and silently
rehearsing in our heads are all the same thing, and achieved by
following a series of predictions. HTMs can do this as well.
Imagining the future can be valuable in many applications. For
example, suppose a car is equipped with an HTM to monitor
nearby traffic. If a novel situation occurs, the HTM can follow a
series of predictions to see what likely events will happen in the
future, and therefore can imagine dangerous situations before
they occur.

Prediction is also at the heart of how HTMs can direct motor
behavior, the fourth and last capability of HTM.

1.4 Direct behavior
An HTM that has learned the causes in its world, and how those
causes behave over time, has in essence created a model of its
world. Now suppose an HTM is attached to a system which
physically interacts with the world. You can imagine an HTM
being attached to a robot, but it doesn’t need to be limited to
that. What is important is that the system can move its sensors
through its world and/or manipulate objects in its world. In such
a system, the HTM can learn to generate complex goal-oriented
behavior. A brief explanation will be given here.

Figure 2a shows a system with an HTM and the ability to
generate simple behaviors. The motor components of this system

have built-in, “reflexive”, or hard-wired behaviors. These are
simple behaviors that exist independently of the HTM.

Figure 2a

As the HTM discovers the causes in its world, it learns to
represent its built-in behaviors just as it learns to represent the
behaviors of objects in the outside world. From the HTM’s
perspective, the system it is connected to is just another object in
the world. The HTM forms representations of the behaviors of
the system it is attached to, and importantly, it learns to predict
its activity. Next, through an associative memory mechanism,
the HTM-based representations of the built-in behaviors are
paired with the mechanisms creating the built-in behaviors
themselves (Figure 2b). After this associative pairing, when the
HTM invokes the internal representation of a behavior, it can
cause the behavior to occur. If the HTM predicts that a behavior
will occur, it can make the behavior happen in advance. Now the
HTM is in a position to direct behavior. By stringing together
sequences of these simple behaviors, it can create novel,
complex, goal-oriented behaviors. To do this, the HTM performs
the same steps it does when generating a string of predictions
and imagining the future. However, now instead of just
imagining the future, the HTM strings together the built-in
behaviors to make them actually happen.

Figure 2b

You can observe the basics of this behavior learning mechanism
in your own body. Behaviors such as eye movements, chewing,
breathing, retracting an arm from a sharp object, walking, and
even running are largely generated in older parts of the brain, not
the neocortex. Most of the time, these behaviors are generated
with little or no neocortical involvement. For example, you
generally are unaware of how your jaw and tongue move when
chewing, how your legs move when walking, and you are
normally unaware of your breathing. However, you can
consciously control your breathing and eye movements, or walk
in an unusual way. When you do this your neocortex is in

HTM

Representations of
motor behavior are
auto-associatively
paired with motor
generators,
allowing HTM to
direct behavior

world

motor

HTM

HTM models the
world by building
representations of
causes, including
hardwired motor
behaviors

world

motor

3/27/2007 © 2006 Numenta, Inc. 5

control. The neocortex didn’t know how to do these when you
were born. It had to learn how in the manner just described.

HTMs can direct the behavior of many different types of
systems; they aren’t limited to traditional robotics. Imagine an
office building with heating and air conditioning. There are
separate temperature controls on each floor. Now we attach an
HTM to the building. Sensory inputs to the HTM consist of
temperature sensors throughout the building as well as the
settings on the temperature controls. The HTM might also get
inputs representing the time of day, the number of people going
in and out of the building, the current weather outside, etc. As
the HTM learns, it builds a model of the building, which
includes how the temperature controls behave relative to all the
other things happening to and around the building. It doesn’t
matter if humans are changing the controls or some other
computer. The HTM now uses its model to predict when things
will happen, including when the temperature controls will turn
on and off or be raised or lowered. By pairing the HTM’s
internal representations of these actions with the temperature
controls, the HTM can start directing the “behavior” of the
building. The HTM may be better at anticipating peak demands
and therefore be better at maintaining desired temperatures or
reducing consumed energy.

Summary
We have briefly discussed the four capabilities of an HTM.

1) Discovering causes in the world
2) Inferring causes of novel input
3) Making predictions
4) Using prediction to direct motor behavior

These are fundamental capabilities that can be applied to many
types of problems. Now we turn our attention to how HTMs
actually discover and infer causes.

2. How do HTMs discover and infer
causes?

HTMs are structured as a hierarchy of nodes, where each node is
performing the same learning algorithm. Figure 3 shows a
simple HTM hierarchy. Sensory data enters at the bottom.
Exiting the top is a vector where each element of the vector
represents a potential cause of the sensory data. Each node in the
hierarchy performs the same function as the overall hierarchy.
That is, each node looks at the spatio-temporal pattern of its
input and learns to assign causes to this input pattern. Said
simply, each node, no matter where it is in the hierarchy,
discovers the causes of its input.

The outputs of nodes at one level become the inputs to the next
level in the hierarchy. Nodes at the bottom of the hierarchy
receive input from a small area of the sensory input. Therefore,
the causes they discover are ones that are relevant to a small part
of the sensory input area. Higher up regions receive input from
multiple nodes below, and again discover the causes in this
input. These causes will be of intermediate complexity,
occurring over larger areas of the entire input space. The node or
nodes at the top of the hierarchy represent high level causes that
may appear anywhere in the entire sensory field. For example, in
a visual inference HTM, nodes at the bottom of the hierarchy
will typically discover simple causes such as edges, lines, and
corners in a small part of the visual space. Nodes at the top of
the hierarchy will represent complex causes such as dogs, faces,
and cars which can appear over the entire visual space or any
sub-part of the visual space. Nodes at intermediate levels in the
hierarchy represent causes of intermediate complexity that occur
over intermediate-sized areas of the visual space. Remember that
all these causes need to be discovered by the HTM. They are not
programmed in or selected by a designer.

In an
HTM, beliefs exist at all levels in the hierarchy, not just at the
top level. A belief is an internal state of each node. You can
think of it as a vector of scalar values where each element in the
vector represents the probability that a cause is active.

Each element in the belief vector (i.e. each cause) stands on its
own. Each cause can be understood and interpreted on its own
and has its own meaning. In other words, the meaning of a

Sensory data

Beliefs

Figure 3

3/27/2007 © 2006 Numenta, Inc. 6

variable representing a cause does not vary depending on what
other causes might be active in the same belief vector. This does
not mean the causes represented by a node are statistically
independent, or that only one is active at a time. Several causes
may be active at once. Representations used in HTM are
different than say the representations used in ASCII codes. A
particular bit in the eight bit ACSII code has no meaning on its
own.

The outputs of nodes are also vectors. The outputs are similar to
the belief of the node, and are derived from the belief vector. For
now, we will act as if the outputs of a node are its belief. Even
though this isn’t completely correct, it will make it easier to
describe the operation of HTMs.

With this in mind, we can say the inputs to a node are the beliefs
from its child nodes. The output of a node is a belief that
becomes part of the input to its parent(s). It is even correct to
think of the lowest level sensory data as beliefs coming from a
sensory system.

In an ideal world, there would be no ambiguity at each node.
However, this does not occur in practice. One of the important
properties of an HTM is that it rapidly resolves conflicting or
ambiguous input as information flows up the hierarchy.

Each node in an HTM generally has a fixed number of causes
and a fixed number of output variables. Therefore, an HTM
starts with a fixed number of possible causes, and through
training, it learns to assign meaning to them. The nodes do not
“add” causes as they are discovered, instead, over the course of
training the meaning of the outputs gradually change. This
happens at all levels in the hierarchy simultaneously. A
consequence of this learning methodology is that an untrained
HTM cannot form very meaningful representations at the top of
the hierarchy until nodes at the bottom of the hierarchy have
undergone sufficient training.

The basic operation of each node is divided into two steps. The
first step is to assign the node’s input pattern to one of a set of
quantization points (representing common spatial patterns of
input). If a node has 100 quantization points, the node assigns a
probability to each of the 100 quantization points that the current
input matches that quantization point. Again, in this first step,
the node decides how close (spatially) the current input is to
each of its quantization points and assigns a probability to each
quantization point.

In the second step, the node looks for common sequences of
these quantization points. The node represents each sequence
with a variable. As input patterns arrive over time, the node
assigns to these variables a probability that the current input is
part of each sequence. The set of these sequence variables is the
output of the node, and is passed up the hierarchy to the
parent(s) of the node.

A node also can send information to its children. The messages
going down the hierarchy represent the distribution over the

quantization points, whereas the messages going up the
hierarchy represent the distribution over the sequences.
Therefore, as information passes up the hierarchy, each node
tries to coalesce a series of input patterns into a relatively stable
output pattern. As information flows down the hierarchy, each
node takes a relatively stable pattern from its parent node(s) and
tries to turn it into a sequence of spatial patterns.

By assigning causes to sequences of patterns, there is a natural
coalescing of time as patterns move from the bottom of the
hierarchy to the top. Fast changing low-level input patterns
become slower changing as they rise to the top. The opposite is
also true. Relatively stable patterns at the top of the hierarchy
can unfold into complex temporal patterns at the bottom of the
hierarchy. The changing input patterns arriving at a node are
analogous to a series of musical notes. Sequences of these notes
are like melodies. If the input stream arriving at a node matches
one of its learned melodies, the node passes the “name” of the
melody up the hierarchy, not the individual notes. The next
higher regions are doing the same thing, looking for sequences
of sequences, etc. Each node predicts what note or notes are
likely to follow next and these predictions are passed down the
hierarchy to the child regions.

The number of levels of the hierarchy, the number of nodes at
each level, and the capacity of each node are not critical to the
basic theory of HTMs. Similarly, the exact connectivity between
nodes is not critical as long as every two connected nodes have a
clear parent/child relationship in the hierarchy. Figure 4 shows
several variations of connectivity that are all valid HTMs. The
design and capacity of a particular HTM must be matched to the
problem being addressed and the available computing resources.
A lot of effort may be required to get optimal performance.
However, all configurations of HTM will work to some degree.
In this regard, the system is robust.

Given that each node in an HTM has to discover and infer
causes (exactly what the entire HTM has to do albeit on a
smaller scale), we are led to ask two questions. First, why is the
use of a hierarchy important? That is, why is it easier to discover
and infer causes using a hierarchy of nodes? Second, how does
each node discover causes and do inference? After all, each node

Figure 4

Regular hierarchy Generation skip Multiple parents

Combining
hierarchies

3/27/2007 © 2006 Numenta, Inc. 7

still has to solve the same problem that the entire system has to
solve. We will address the first of these two questions next.

3. Why is a hierarchy important?

There are four reasons why using a hierarchy of nodes is
important. We will touch on each one, starting with the most
important.

3.1 Shared representations lead to generalization
and storage efficiency
Many methods that have been proposed to do pattern recognition
are unable to scale to large problems. Often these methods fail
because the amount of memory required, and the amount of time
required to train, grows exponentially as the problem space gets
large, thereby making it impractical to build large systems.
HTMs can require lots of training and large amounts of memory,
but they do not suffer exponential problems of scale. The
hierarchy in HTMs is the key to why they can scale. Causes in
lower levels of the hierarchy are shared among higher-level
causes, significantly reducing the amount of time and memory
required to learn new causes, and providing the HTM a means to
generalize previously learned behaviors to new and novel
causes.

To help you understand why HTMs can solve problems that
other algorithms cannot solve, we will look a bit more deeply
into the difficulties these other approaches have had. We will use
visual pattern recognition as our example problem because this
problem has undergone much study and is familiar to many
researchers. But remember, the HTM algorithm and the issues
we are discussing are not specific to vision.

The most basic approach one can use to recognize objects in
visual images is to store a prototypical representation for each
object to be recognized. Unknown patterns are then put through
a set of transformations to get them to match the prototypes. We
will call this the “prototype and transformation” method. For
example, if you wanted to recognize printed letters you could
store a prototype image for each letter to be recognized. Given
an unknown image you would first translate the unknown image
in x-y coordinates to center it. Then you would perform a scaling
transformation to make it the same size as the prototypes. Then
you might rotate the unknown image. Finally you use some
distance metric between the transformed unknown and the
prototypes to determine the best match. This approach can work
for simple problems such as printed character recognition but it
quickly falls apart for more complex problems. For most real
world objects, you can’t identify a “prototypical” image. The
number of possible transformations is nearly unlimited, and
often there is no possible transformation that can be performed
to convert an unknown into a prototype.

For example, imagine you are trying to recognize a picture of a
dog. In your prototype dog image, the dog is facing left, and in
your unknown image, the dog is facing right (of course you
don’t know this because the image is unknown). You could try a
“rotation through plane” transformation on the unknown image
and now it too would be facing left. However, what if you had
two images, one of a Great Dane and the other of a Pekinese? A

3/27/2007 © 2006 Numenta, Inc. 8

human would recognize both of these as dogs, but what kind of
transformation could be used to convert one representation to the
other? It is hard to say. Worse still, what if one picture was
looking at the head of a dog, and the other was looking at the
rear of the dog. Humans have no trouble recognizing both
images as dogs, but in cases like this, there are no regular
transformations that can convert the rear of a dog into the head
of a dog. Vision scientists have tried many ways to overcome
this problem. Ultimately they realized they have to store more
than one prototype for each object to be recognized. Perhaps
they need prototypes for each breed of dog and each from many
different angles.

How many different examples of the objects are needed? If you
could store every image of every dog you ever have seen, then
supposedly it would be easier to recognize an unknown image as
a dog by comparing it to all previously seen images. Of course,
this is impractical. First, there are virtually an unlimited number
of images that might be required for each object, and second,
you still have to perform some transformations and apply a
distance metric to compare a novel unknown to the many
previously stored prototypes. Systems attempting to store
multiple prototypes take too long to train and run out of
memory. Thus, all methods of the types just described work only
on simple problems. When applied to real world images, they
fail. Today, general vision recognition by a computer remains
unsolved.

HTMs can do large scale visual inference with practical amounts
of memory and with limited processing time. HTMs do not
perform any transformations as part of the inference process. A
visual system built using an HTM does not rotate, translate,
scale, or perform any other transformation on an unknown image
to get it to “match” a prototype. Indeed, an HTM visual system
doesn’t even have stored prototypes in the usual sense. HTMs
try to match inputs to previously seen patterns, but they do so a
piece at a time and in a hierarchy.

To see how, let’s start by imagining one node at the bottom of
the hierarchy, a node looking at a small part of the visual input.
If this node were looking at a 10x10 image patch (100 binary
pixels), the number of possible patterns it might see is 2100, a
very large number. Even if the node only saw a tiny fraction of
the possible patterns, it couldn’t store every pattern that it would
likely see in its lifetime. Instead, the node stores a limited, fixed
number, of patterns, say 50 or 100. These stored patterns are the
quantization points. You can think of the quantization points as
the most common patterns seen by the node during training.
Further training will not increase the number of quantization
points, but it can change them. At every moment, the node takes
a new and novel input and determines how close it is to each
stored quantization point. Note that this low-level node knows
nothing about large objects such as dogs and cars because in a
10x10 pixel patch you can only see a small part of a big object.
The causes this node can discover are limited in number and
limited in complexity. Typically in a visual system, causes
discovered by a node at the bottom of the hierarchy correspond
to causes such as edges and corners. These causes can be part of

many different higher level causes. An edge can be part of a dog,
a cat, or a car. Therefore, the memory used to store and
recognize low level causes will be shared among high level
causes.

A node one step up in the hierarchy receives as its input the
output of all its child nodes. (Assume the output of a node is just
the distribution over the quantization points, ignoring for now
the role of sequence memory.) This second-level node assigns
quantization points to the most commonly occurring
coincidences of lower level causes. This means that the second
level node can learn to represent only those causes that are
combinations of lower level causes. This restriction applies
again and again as you go up the hierarchy. The design is such
that we gain an exponential increase in memory efficiency by
sharing representations in a hierarchy. The negative side of this
constraint is that the system cannot easily learn to recognize new
objects that are not made up of previously learned sub-objects.
This limitation is rarely a problem because new objects in the
world are generally formed by combinations of previously
learned sub-objects.

Although sharing representations in a hierarchy makes inference
possible, HTMs still may use a lot of memory. Think back to the
example of recognizing a dog facing left or facing right. For an
HTM-based visual system to recognize both images (i.e. assign
them to the same cause), it has to be exposed to dogs or similar
animals facing both left and right (and many other orientations).
This requirement will make no difference at the lowest levels of
the hierarchy, but it does mean that at mid-levels and higher, the
HTM has to store many different combinations of low level
objects and assign them to the same cause. Therefore, HTMs use
a lot of memory, but the hierarchy ensures that the amount of
memory needed is finite and of a practical size.

After sufficient initial training, most new learning occurs in the
upper levels of the HTM hierarchy. Imagine you have an HTM
that has been trained to recognize different animals through a
visual sense. Now we present a new type of animal and ask the
HTM to learn to recognize it. The new animal shares many
attributes with previously learned animals. It might have eyes,
fur, ears, tail, legs, or scales. The details of a new animal, such
as it eyes, are similar or identical to the details learned
previously and need not be relearned. As another example,
consider that when you learn a new word you don’t need to learn
new letters, syllables, or phonemes. This greatly reduces both
the memory and time it takes to learn to recognize new objects.

When training a new HTM from scratch, the lower-level nodes
become stable before the upper-level nodes, reflecting the
common sub-properties of causes in the world. As a designer of
an HTM, you can disable learning for lower-level nodes after
they become stable, thus reducing the overall training time for a
given system. If an HTM is exposed to new objects that have
previously unseen low-level structure, it will take much longer
for the HTM to learn the new object and to recognize it. We see
this trait in human performance. Learning new words in a
language you are familiar with is relatively easy. However, if

3/27/2007 © 2006 Numenta, Inc. 9

you try to learn new words from a foreign language which has
novel sounds and phonemes you will find it is hard and takes
longer.

Sharing representations in a hierarchy also leads to
generalization of expected behavior. When exposed to a new
animal, if you see a mouth and teeth, you have an automatic
expectation that the new animal eats with the mouth and might
bite you. This expectation might not seem surprising but it
illustrates the power of shared sub-causes in a hierarchy. A new
object in the world inherits the known behavior of its sub-
components.

3.2 The hierarchy of HTM matches the spatial and
temporal hierarchy of the real world
One of the reasons that HTMs are efficient in discovering causes
and performing inference is that the structure of the world is
hierarchical. Imagine two points in visual space. We can ask
how correlated are the light values of those two points. If the
points are very close to each other then their values will be
highly correlated. However, if the two points are visually far
apart it will be difficult to find correlations between them. HTMs
exploit this structure by first looking for nearby correlations in
sensory data. As you ascend the hierarchy, the HTM continues
this process, but now it is looking for correlations of nearby
causes from the first level, then correlations of nearby causes
from the second level, etc.

The objects in the world, and the patterns they create on the
sensory arrays, generally have hierarchical structure that can be
exploited by the HTM’s hierarchy. A body has major parts such
as a head, torso, arms, and legs. Each of these is composed of
smaller parts. The head has hair, eyes, nose, mouth, ears, etc.
Each of these is composed of yet smaller parts. An eye has
lashes, pupil, iris, and lid. At each level of the hierarchy, the
subcomponents are near each other in the input pattern arriving
from lower levels in the hierarchy.

Note that if you were to randomly mix up the pixels coming
from a camera, then an HTM visual system would no longer
work. It wouldn’t be able to discover the causes in the world
because it wouldn’t be able to first find local correlations in its
input.

HTMs do not just exploit the hierarchical spatial structure of the
world. They take advantage of the hierarchical temporal
structure of the world as well. Nodes at the bottom of an HTM
find temporal correlations among patterns that occur relatively
close together in both space and time: “pattern B immediately
follows pattern A”. Because each node converts a sequence of
spatial patterns into a constant value, the next level in the
hierarchy looks for sequences of sequences. The world is
hierarchical in a temporal sense, not just spatially. For example,
language is a hierarchically structured temporal sequence.
Simple sounds are combined into phonemes, phonemes are
combined into words, and words are combined into phrases and
ideas. The temporal hierarchical structure of language may be

obvious, but even vision is structured this way, at least for a
system that can move about in the world. Visual patterns that are
experienced sequentially in time are likely to be correlated.
Patterns that are experienced far apart in time are less likely to
be correlated in the raw sensory data, but may be correlated
when looking at higher level causes.

Most real-world environments such as markets, traffic,
biochemical reactions, human interactions, language, galaxies,
etc. have both temporal and spatial structure, and both are
hierarchical in nature. This structure is a natural result of the
laws of physics where the forces of nature are strongest for
objects that are close in space and time.

In summary, HTMs work because the world has spatial and
temporal correlations that are hierarchically organized.
Correlations are first found among nearest neighbors (in space
and time). Each node in the hierarchy coalesces both time and
space, and therefore, as information ascends the hierarchy of the
HTM, the representations cover larger areas of sensory space,
and longer periods of time.

When designing an HTM system for a particular problem, it is
important to ask whether the problem space (and the
corresponding sensory data) have hierarchical structure. For
example, if you desire an HTM to understand financial markets,
you might want to present data to the HTM where adjacent
sensory input data are likely to be correlated in space and time.
Perhaps this means first grouping stock prices by category, and
then by industry segment. (E.g. technology stocks such as
semiconductors, communications, and biotechnology would get
grouped together in the first level. At the next level, the
technology group is combined with manufacturing, financial,
and other groups.). You could build a similar hierarchy for
bonds, and then at the top combine stocks and bonds.

Here is another example. Suppose you want an HTM to model a
manufacturing business. At the bottom of the hierarchy might be
nodes that receive as inputs various manufacturing metrics.
Another set of nodes at the bottom might receive as inputs
marketing and sales metrics, and yet another set of low level
nodes might receive as inputs financial metrics. The HTM is
more likely to first find correlations among various
manufacturing metrics than between the cost of advertising and
the yield of a manufacturing line. However, higher up in the
hierarchy, nodes can learn to represent causes global to the
business, spanning manufacturing and marketing. The design of
an HTM’s hierarchy should reflect the likely correlations in its
world.

This principle of mapping the hierarchy of an HTM to the
hierarchical structure of the world applies to all HTM systems.

An interesting question is whether an HTM can have input that
does not have a spatial hierarchy. For example, could an HTM
have direct inputs representing words, as opposed to visual input
of printed letters? Pure words do not have an obvious spatial
ordering. In a sensory array where each input line represents a

3/27/2007 © 2006 Numenta, Inc. 10

different word, how would we arrange the word inputs so that
local spatial correlations can be found? We don’t yet know the
answer to this question, but we suspect that HTMs can work
with such input. Our intuition is that the sensory space could
have just a temporal hierarchal organization, although most
causes have both. An argument for this supposition is that at the
top of a hierarchy you no longer have spatial orientation, such as
the top of a visual hierarchy. And yet this top node can be an
input to a node that combines the top visual and top auditory
beliefs. Above a certain point in the hierarchy, there is no clear
spatial mapping, no topography to the representations.
Biological brains solve this problem, suggesting HTMs can as
well.

Sensory data can be arranged in more than two dimensions.
Human vision and touch are arranged in two dimensions because
the retina and skin are two-dimensional sensory arrays and the
neocortex is a corresponding two-dimensional sheet. But
suppose we are interested in having an HTM learn about the
ocean. We can create a three-dimensional sensory array by
placing temperature and current sensors at different depths for
each latitude and longitude coordinate. This arrangement creates
a three-dimensional sensory array. Importantly, we would expect
to find local correlations in the sensory data as we move in any
one of these three dimensions. We now can design an HTM
where each first level node looks at data from a three-
dimensional cube of ocean. The next level of the hierarchy
would receive input from the low level nodes representing a
larger cube of ocean, etc. Such a system would be better at
discovering and inferring causes than one where the sensory data
had to be collapsed onto a two-dimensional sensor array, as in a
camera. Humans sometimes have difficulty interpreting high
dimensional data and we go to lengths to create visualization
tools to assist us. HTMs can be designed to “see” and “think” in
three dimensions.

There is no reason why we have to stop at three spatial
dimensions. There are mathematics and physics problems that
reside in four or more dimensions, and some everyday
phenomenon, such as the structure of a business, might best be
analyzed as high dimensional problems. Many of the causes that
humans sense via two-dimensional senses might more easily be
analyzed via a higher dimensional HTM organization. High
dimensional HTM is an area for exploration.

Some HTM designs will be more efficient than others at any
particular problem. An HTM that can discover more causes at
low levels of the hierarchy will be more efficient and better at
discovering high level causes than an HTM that discovers fewer
causes at low levels. Designers of some HTM systems will
spend time experimenting with different hierarchies and sensory
data arrangements trying to optimize both the performance of the
system and its ability to find high level causes. HTMs are very
robust; any reasonable configuration will work – that is, find
causes – but the HTMs performance and ability to find high
level causes will be determined by the node-to-node hierarchical
design of the HTM, what sensory data is presented to the HTM,

and how the sensory data is arranged relative to the low-level
nodes.

In summary, HTMs work largely because their hierarchical
design takes advantage of the hierarchical structure of the world.
Therefore, a key part of designing an HTM-based system is:

1) Understanding whether the problem space has
 appropriate spatial-temporal structure.
2) Making sure that the sensory data is arranged to first
 capture local correlations in the problem space.
3) Designing the hierarchy to most efficiently exploit
 the hierarchical structure in the problem space.

3.3 Belief propagation ensures all nodes quickly
reach the best mutually compatible beliefs
A connected graph where each node in the graph represents a
belief or set of beliefs is commonly referred to as a Bayesian
network. Thus, HTMs are similar to Bayesian networks. In a
Bayesian network, beliefs at one node can modify the beliefs at
another node if the two nodes are connected via a conditional
probability table (CPT). A CPT is a matrix of numbers where the
columns of the matrix correspond to the individual beliefs from
one node and the rows correspond to the individual beliefs from
the other node. Multiplying a vector representing the belief in a
source node times the CPT results in a vector in the dimension
and “language” of beliefs in the destination node.

A simple example will illustrate the idea. Assume we have two
nodes where node A represents a belief about air temperature
and has five output variables labeled “hot”, “warm”, “mild”,
“cold” and “freezing”. Node B represents a belief about
precipitation and has four output variables labeled “sunny”,
“rain”, “sleet”, and “snow”. If we know something about the
temperature, it can tell us something about the precipitation and
vice-versa. A CPT matrix encapsulates this knowledge. It is
fairly easy to populate appropriate values in the CPT by pairing
the values of the nodes A and B as they change over time.
Training the CPT and later inferring how knowledge in one node
affects other nodes can even be done even when the beliefs of
the two nodes are ambiguous or there is a distribution of beliefs.
For example, node A may believe there is 0% likelihood it is
“hot”, 0% likelihood it is “warm”, 20% likelihood it is “mild”,
60% likelihood it is “cold”, and 20% likelihood it is “freezing”.
Multiplying this temperature belief vector times the CPT will
result in a vector representing the appropriate belief vector about
precipitation.

Belief Propagation (BP) is a mathematical technique that is used
with Bayesian networks. If the network of nodes follows certain
rules, such as not containing any loops, BP can be used to force
the entire network to quickly settle on a set of beliefs that are
mutually consistent. With the appropriate network constraints,
BP shows that the network will reach its optimal state in the time
it takes a message to traverse the maximum length path through
the network. BP doesn’t iterate to reach its final state; it happens
in one pass. If you force a set of beliefs on one or more nodes in

3/27/2007 © 2006 Numenta, Inc. 11

a Bayesian network, BP will quickly force all the nodes in the
network to reach mutually consistent beliefs.

It is helpful for the designer of HTM-based systems to have a
basic understanding of Bayesian networks and Belief
Propagation. A thorough introduction is beyond the scope of this
paper but can easily be found on the internet or in books.

HTM uses a variation of Belief Propagation to do inference. The
sensory data imposes a set of beliefs at the lowest level in an
HTM hierarchy, and by the time the beliefs propagate to the
highest level, each node in the system represents a belief that is
mutually consistent with all the other nodes. The highest level
nodes show what highest level causes are most consistent with
the inputs at the lowest levels.

There are several advantages to doing inference this way. One is
that ambiguity gets resolved as beliefs ascend the hierarchy. As
an example, imagine a network with three nodes, a parent node
and two children nodes. Child node A believes with 80%
certainty that it is seeing a dog and with 20% certainty that it is
seeing a cat. Child node B believes with 80% certainty that it is
hearing a pig squeal and with 20% certainty that it is hearing a
cat meow. Parent node C decides with high certainty that a cat is
present and not a dog or pig. It chose cat because this belief is
the only one that is consistent with its inputs. It made this choice
even though “cat” image and “cat” sound were not the most
likely beliefs of the child nodes.

Another advantage of hierarchical BP is that it is possible to
make large systems that settle rapidly. The time it takes for an
HTM to infer its input increases linearly with the number of
levels in the hierarchy. However, the memory capacity of the
HTM increases exponentially with the number of levels. HTM
networks can have millions of nodes, yet still have the longest
path be short, say five or ten steps.

We already have seen that many types of inference, such as
hearing and touch, require time-changing patterns. Because basic
belief propagation has no way of handling time-varying data, the
concept of time must be added to do inference in these domains.
It turns out that time is also needed to make a network self-
training, even for problems such as static visual inference which
at first doesn’t seem to require time. The need to incorporate
time will be explained in more detail later. An HTM network
needs to be exposed to time-varying input, and it needs to store
sequences of patterns for it to learn and solve most inference
problems.

HTMs and Bayesian networks are both types of “graphical
probability models”. You can think of HTMs as similar to
Bayesian networks but with some significant additions to handle
time, self-training, and the discovery of causes.

BP also has several constraints that we don’t want to adhere to in
HTMs. One already has been mentioned. To guarantee that the
system doesn’t endlessly cycle or form false beliefs, BP
prohibits loops in the network. There is evidence that for many

types of networks, BP works even if there are loops. We believe
this is true for HTM. In a typical HTM, each node sends its
belief message to many other nodes (high fan out) and receives
belief messages from many other nodes (high fan in). The high
fan in and fan out reduce the likelihood of self-reinforcing false
beliefs. The nodes in an HTM are also more sophisticated than
in standard BP. Because of the coalescing and expansion of
time-based sequences, it is difficult for a simple loop between
several nodes to be self-reinforcing in a way that leads to false
beliefs.

BP is a very powerful concept and a key part of how HTMs
work. You should view HTMs as large Bayesian networks
constantly passing beliefs between nodes in an effort to reach the
most mutually compatible beliefs. The nodes at the bottom of the
hierarchy are mostly driven by sensory patterns which are passed
up through the hierarchy.

In an HTM, all the nodes are dynamic elements. Each node can
use its internal memory of sequences combined with recent state
information to predict what its next belief should be, and it
passes these expectations down the hierarchy. In essence, each
node can dynamically change its state based on its internal
memory. So changes can originate anywhere in the network, not
just at the sensory nodes. The other way that HTM nodes are
dynamic is that the meaning of their beliefs changes through the
learning process; as nodes discover causes, the meaning of their
outputs change. This in turn changes the inputs to parent and
child nodes, which also need to adjust.

In summary, there are three sources of dynamic change in an
HTM. One occurs because of the changing sensory input. The
second occurs as each node uses its memory of sequences to
predict what will happen next and passes this prediction down
the hierarchy. The third happens only during training and at a
much slower time scale. As nodes learn, they change the
meaning of their outputs, which affects other nodes which have
to learn to adjust their meanings as well. Whenever the state of
the network changes, whether due to sensory changes or internal
prediction, the network quickly settles on the set of beliefs that
are most mutually consistent. In human terms, what occupies our
thoughts is sometimes driven by our senses and sometimes by
our internal predictions

3.4 Hierarchical representation affords
mechanism for attention
The hierarchy in an HTM provides a mechanism for covert
attention. “Covert” attention is when you mentally attend to a
limited portion of your sensory input. Humans can attend to a
part of a visual scene. We can limit our perceptual experience to
a variable size area in the center of our visual field, and we can
even attend to objects that are off the center of our visual field.
We can similarly attend to tactile input from one hand, the other
hand, or our tongue.

Compare this to “overt” attention which is when you move your
eyes, fingers, or body to attend to different objects. Many

3/27/2007 © 2006 Numenta, Inc. 12

perceptual systems need a means for covert attention, if for no
other reason than to attend to different objects in a complex
scene.

Figure 5 illustrates the basic mechanism by which HTMs
implement covert attention. Each node in the hierarchy sends
beliefs to other nodes higher in the hierarchy. These connections
are illustrated by small arrows. By providing a means to switch
these pathways on and off, we can achieve the effect of limiting
what the HTM perceives. The figure does not show the
switching mechanism but highlights the active connections and
nodes. The belief at the top of the hierarchy will represent the
causes in a limited part of the input space.

There are several possible ways these switches could be
activated. At this time, we have verified that the basic principle
works. Biology suggests there are several ways to do this
including a bottom up method where strong unexpected patterns
will open the pathway for attention, and a top down method
driven by expectation. Further, it appears that in human brains,
part of the pathway up the hierarchy is switchable for attention
and part of it isn’t. Methods for switching covert attention in
HTMs are being developed and tested.

In this section, we have covered the major reasons why the
hierarchical design of HTMs is essential.

1) Shared representations reduce memory requirements
and training time.

2) The hierarchical structure of the world (in space and
time) is mirrored by the hierarchical structure of the
HTM.

3) Belief propagation-like techniques ensure the network
quickly reaches the best mutually consistent set of
beliefs.

4) The hierarchy affords a simple mechanism for covert
attention.

Now we are ready to turn our attention to how the individual
nodes in an HTM work. Recall that each node has to discover
causes and perform inference. Once we cover what nodes do and
how they do it, we will have covered the basics of how HTMs,
as a whole, discover causes and how they infer the causes of
novel input.

4. How does each node discover and infer
causes?

A node in an HTM doesn’t “know” what it is doing. It doesn’t
know if its inputs represent light, sonar, economic data, words,
or manufacturing process data. A node also doesn’t know where
in the hierarchy it is situated. So how can it self-learn what
causes are responsible for its input? The answer is simple in
theory, but a little complicated in practice.

Recall that a “cause” is just a persistent or recurring structure in
the world. So a node wants to assign causes to recurring patterns
in its input. There are two basic types of patterns, spatial
patterns, and temporal patterns. Suppose a node has one hundred
inputs and two of those inputs, i1 and i2 become active at the
same time. If this happens often enough (far greater than by
chance), then we can assume that i1 and i2 share a common
cause. This is just common sense. If things occur together often,
we can assume they have a common cause someplace out in the
world. Other common spatial patterns might involve a dozen
inputs that occur together. Let’s say a node identifies the fifty
most common spatial patterns found in its input. (There is no
need to, nor is it possible to, enumerate “all” spatial patterns
seen by the node). When a new and novel input pattern arrives,
the node determines how close the new pattern is to the
previously learned 50 patterns. The node assigns a probability
that the new pattern matches each of the 50 known patterns.
These spatial patterns are the quantization points discussed
earlier.

Let’s label the learned spatial patterns sp1 thru sp50. Suppose the
node observes that over time sp4 often follows sp7, and it does
so far greater than chance would allow. Then the node can
further assume the temporal pattern sp7 - sp4 has a common
cause. This is also common sense. If patterns repeatedly follow
each other in time, then they are likely to share a common cause
somewhere out in the world. Assume a node stores the 100 most
common temporal sequences. The likelihood that each of these
sequences is active is the output of the node. Those 100
sequences represent the 100 causes this node has learned.

Here then is what nodes in an HTM do. At every point in time, a
node looks at its input and assigns a probability that this input
matches each element in a set of commonly occurring spatial
patterns. Then the node takes this probability distribution and
combines it with previous state information to assign a
probability that the current input is part of a set of commonly
occurring temporal sequences. The distribution over the set of
sequences is the output of the node and is passed up the
hierarchy. Finally, if the node is still learning, then it might
modify the set of stored spatial and temporal patterns to reflect
the new input.

Let’s look at a simple example from vision for illustration.
Figure 6a shows input patterns that might be seen by a node in
the first level of a hypothetical visual HTM. This node has 16

Figure 5

3/27/2007 © 2006 Numenta, Inc. 13

inputs representing a 4x4 pixel patch in a binary image. The
figure shows several possible patterns that might appear in this
patch of pixels. Some of these patterns are more likely than
others. You can see that patterns which might be part of a line or
corner will be more likely than patterns that look random.
However, the node doesn’t know it is looking at a 4x4 pixel
patch and has no designed-in knowledge of what patterns are
common and what they might “mean”. All it sees is 16 inputs
that have values between 0 and 1. It will look at its inputs over a
length of time and try to determine which patterns are the most
common. It stores representations for the most common patterns.
The designer of the HTM designates the number of spatial
patterns, or quantization points, this node can represent.

Figure 6b shows three sequences of spatial patterns that might be
seen by our low-level visual node. The first two rows of patterns
are sequences that will likely be common. You can see they
represent a line moving from left to right and a corner moving
from upper left to lower right. The third row is a sequence of
patterns that is unlikely to be seen by this node. Again, the node
has no way of knowing which sequences will be likely, nor what
the sequences mean. All it can do is try to learn the most
common sequences.

Not illustrated in the visual example above is another common
(but not always necessary) function of a node. If the HTM is
making predictions, it uses its sequence memory to predict what
spatial patterns are likely to happen next. This prediction, in the
form of a probability distribution over the learned spatial
patterns, is passed down the hierarchy to the child nodes. The
prediction acts as a “prior” biasing the lower level nodes.

In summary, we can say that each node in an HTM first learns to
represent the most commonly occurring spatial patterns in its
input. Then it learns to represent the most commonly occurring
sequences of those spatial patterns. The node’s outputs going up
the hierarchy are variables that represent the sequences, or more
precisely, the probability those sequences are active at this
moment in time. A node also may pass predicted spatial patterns
down the hierarchy.

So far we have dealt with the simple explanation of what a node
does. Now we will discuss some of the options and challenges.

Handling distributions and real-world data
The example patterns in the previous figures are not realistic.
Most nodes will receive more than 16 inputs, and consequently
the input patterns seen by a node looking at real world data will
be larger, messier, and will almost never repeat. In addition, the
inputs are generally graded probabilities, not binary. Therefore,
the node has to be able to decide what the most common spatial
patterns are without ever seeing any particular pattern twice and
without seeing “clean” patterns.

A similar problem exists for learning temporal patterns. A node
has to determine the most common sequences of spatial patterns
but has to do so looking at distributions of spatial patterns. It will
never see clean data as shown in Figure 6b.

The fact that a node always sees distributions means it is
generally not practical to simply enumerate and count spatial and
temporal patterns. Probabilistic techniques must be used. For
example, the idea of a sequence in an HTM is generally not as
clean as the sequence of notes in a melody. In a melody, you can
state exactly how long the sequence is and how many elements
(notes) it contains. But for most causes in the world, it is not
clear when a sequence begins or ends, and there are possible
branchings at many elements. An analogy would be walking the
streets of a familiar town. The path you take is a sequence of
events. However, there is not a set path through the town. The
“sequence” of streets in the town can vary as you can turn right
or left at each intersection. Also, there isn’t an obvious
beginning or end to the sequence. Yet when you are anywhere in
the town, you know it. As you walk the streets, you are confident
you are in the same town.

Another problem presents itself when learning sequences. To
form sequences, the node has to know when new spatial patterns
arrive, that is, when the sequence elements occur. For example,
when listening to a melody each new note has a sudden onset
which clearly marks the beginning of a new spatial pattern. The
melody is a sequence of spatial patterns where each pattern is
marked by the onset of a new note. Some sensory patterns are
like melodies, but many are not. If you slowly rotate an object
while looking at it, there isn’t a clear concept of when a new
spatial pattern has arrived. Nodes in an HTM have to decide
when the change in the input pattern is sufficient to mark it as a
new event.

Common sequence:
assign to cause

time

Common sequence:
assign to cause

 Uncommon sequence:
ignore

Figure 6b

Common patterns:
remember

Uncommon patterns:
ignore

 Figure 6a

3/27/2007 © 2006 Numenta, Inc. 14

There is much prior art on how to learn spatial patterns with
messy real world data. Some of these models try to precisely
model parts of the visual cortex. There is less prior art on
learning sequences from distributions, at least not in ways that
will work in an HTM.

Numenta has developed and tested several algorithms that solve
these problems. However, we believe that the algorithms,
specifically those for learning sequences, will be under
development for many years. There also may be variations of the
algorithms, each suited to a particular sensory input or problem
space.

Fortunately, most designers of HTM-based systems need not
understand the details of these algorithms. They can specify the
size of the nodes, the dimensions of their inputs and outputs, and
the overall HTM configuration, without worrying about the
details of the learning algorithms within the nodes. However, we
anticipate some people, especially early on, will want to
understand these algorithms and perhaps modify them. Numenta
realizes we need to extend the algorithms for future uses and
other researchers will want to do the same. They may want to
improve their performance, experiment with variations, and
modify the algorithms to tune them to particular types of
problems. To facilitate this, Numenta will make the source code
for our algorithms available. Numenta’s software platform is
designed to easily plug in new algorithms. We believe HTMs
will work as long as the node’s learning algorithm performs
some variation of spatial quantization and sequence learning,
and there may be many ways to achieve these functions.

Next we will address why time-varying inputs are necessary for
learning.

5. Why is time necessary to learn?

Earlier we stated that an HTM could infer causes of “static”
sensory patterns; the prime example being vision. (You can
recognize images when they are flashed in front of your eyes.)
However, we also stated that time-varying inputs are necessary
to learn. Even a static vision system must be presented with a
motion picture image of objects moving about in the visual field
for it to learn properly, to discover causes. Why does learning
require time-varying input?

We already have provided part of the answer to this question.
Because each node learns common sequences of patterns, the
only way a node can do this is if it is presented with sequences
of patterns over time. It may be obvious that the only way to
understand language, or music, or touch is by learning and
recognizing sequences. However, what about static vision? Why
would we need to train an HTM with moving images if, in the
end, all we want to do is recognize static images? Also, what
does a node do with a static pattern if it has memorized
sequences? It is the answers to these questions we want to
discuss now.

At the most basic level, pattern recognition entails assigning
unknown input patterns to one of a number of categories. Say we
have a vision system that can recognize 1,000 objects, or
categories. There are an almost unlimited number of possible
images we can show to our system and we hope that it will
assign each unknown image to the correct category. If “horse” is
one of the categories our system can recognize, there are many
billions of visual patterns that you would immediately see as
“horse”. We want our vision system to do the same.

Therefore, pattern recognition is a “many-to-one” mapping
problem. Many input patterns get mapped to each category. We
will introduce a new term to describe many-to-one mapping:
“pooling”. Pooling means assigning multiple patterns to one
label, that is putting them in the same pool.

Every node in an HTM must perform pooling if the hierarchy as
a whole is to infer causes. Each node has to pool inputs even
when just recognizing spatial patterns. We already have seen
two mechanisms for pooling, although we didn’t label them as
such. Spatial quantization is a pooling mechanism based on
spatial similarity. In this case, we take an unknown pattern and
determine how close it is to each quantization point. Two
patterns that sufficiently “overlap” are considered the same. So,
many possible input patterns are pooled into each quantization
point. This form of pooling is a weak one and not sufficient on
its own to solve most inference problems. The second pooling
method is the learning of sequences. Here a node maps many
quantization points to a single sequence. This method of pooling
is more powerful because it allows arbitrary mappings. It allows
a node to group together different input patterns that have no
spatial overlap. It permits arbitrary many-to-one mappings.

Consider, for example, recognizing the image of a watermelon.
The outside of a watermelon does not look at all like the inside

3/27/2007 © 2006 Numenta, Inc. 15

of a watermelon. Yet if you were to see two images, one of the
outside of a watermelon and one of the inside of a watermelon,
you would identify both as a watermelon. There is no significant
“spatial” overlap between the two images or even parts of the
images, so it is in a sense an “arbitrary” mapping. How does the
HTM “know” these two input patterns represent the same thing?
Who tells it that input pattern A and input pattern B, which are
completely different, should be considered the same? The
answer is time. If you hold a cut watermelon in your hand and
move it about, turn it over, and rotate it etc. you will see a
continuous flow of patterns, which will progress from seeing the
outside of the watermelon to seeing the inside of the watermelon
to everything in between. The ultimate cause, “watermelon”,
persists over time as the input patterns change.

Of course no node in the HTM remembers this entire sequence.
Nodes at the bottom of the hierarchy learn sequences that are
fairly short, dictated by the small area of the input pattern they
can see. Nodes at the next level are more stable. They learn
sequences of the sequences at the bottom level. Stability
increases as patterns ascend the hierarchy. With sufficient
training you will find the output of the highest level in the
hierarchy remaining stable for the duration of the input
sequence. Each node in the hierarchy does spatial pooling and
temporal pooling. Without temporal pooling (i.e. the learning of
sequences) it would be impossible for the HTM to learn on its
own that the outside of a watermelon and the inside of a
watermelon share a common cause.

This argument holds for almost all possible high level causes in
the world, whether they are inherently temporal (such as speech,
music, and weather) or whether they can be inferred statically
(such as vision). Thus, time-varying inputs are necessary to learn
the causes in the world.

Before we go on to discuss how an HTM can recognize a static
image, we need to take a digression and discuss a problem with
the above argument. There are situations where even with
temporal pooling, an HTM may have difficulty learning the
common cause of different inputs, at least not without some
help.

The role of supervision
Suppose you were shown pictures of food and asked to identify
each picture as either a “fruit” or a “vegetable”. If shown an
apple or an orange, you say “fruit”. If shown a potato or an
onion, you say “vegetable”. How did you learn that apple and
orange are both in the same category? You never held an apple
in your hand that turned into an orange as you moved it. It
doesn’t seem possible for an HTM to learn on its own, using
spatial and temporal pooling, that apples and oranges are to be
grouped in the same category.

The problem just described, of learning “fruits” from
“vegetables”, is clear, but the same problem can occur for
situations like the watermelon. It isn’t guaranteed that an HTM
will always learn the desired causes by sensing sequences of
input patterns. For example, what if our HTM was first trained

on insides of watermelons, then on outsides of watermelons? It
would naturally assign these separate patterns to two different
causes. Subsequently, we train the HTM on cut watermelons
where it is shown sequences moving from the inside to the
outside. It is possible that the HTM will form a higher level
cause (watermelon) that represents the pooling of the two lower
level causes (inside red thing becoming outside green thing).
Then again, it might not. It depends on the design of the
hierarchy, how you train the HTM, and the statistics of the input.
If it takes a long time to transition between the inside and
outside views, or if there are many intermediate steps, the HTM
might not pool causes as you would hope. Humans suffer the
same problem when learning things like what are fruits, or who
are impressionist painters. It isn’t always obvious from the
sensory data.

The solution to this class of problem is straightforward. Learning
correct categorization, that is learning the correct causes, can be
made much faster and more certain by supervising the training.
In an HTM, this is done by imposing a prior expectation on the
top level node(s) in the hierarchy during learning. This process is
analogous to a parent saying “fruit”, “vegetable”, or
“watermelon” as you play with your food. You might discover
on your own that some foods have seeds and others don’t, and
therefore discover the category we call “fruit”, but it will be
faster and more certain if someone just tells you this fact.

A parent speaking a word such as “fruit” causes a stable pattern
at the top of the auditory hierarchy (this pattern is the cause
representing the sound of the word). This stable pattern is then
imposed on top of the visual hierarchy making it easy to form
the desired categorization of visual input.

In an HTM, we can simply impose states at the top level(s) of
the hierarchy as we train.

For some HTM applications, it is best to supervise training and
for others it is best not to supervise. For example, if we have an
HTM that is trying to discover high-level causes of stock market
fluctuations, we probably don’t want to impose our prior beliefs
on the system. After all, the goal of this system is to discover
causes humans have not discovered already. Alternately, if we
have an HTM that is being used to improve safety in a car by
looking at nearby traffic, it might make sense to supervise the
training on what are dangerous situations and what aren’t, as
opposed to letting it discover these on its own.

Inference with static images
Now we can address the last question for this section. Say we
have an HTM-based vision system. We train it with time-
varying images. It forms representations of causes, either on its
own or with supervision. Each node in the hierarchy pools
spatial patterns in sequences. Now when a static image is
presented to the system, how does it infer the cause of the
image? Specifically, given that the HTM has memory of
sequences of patterns, how does it infer the correct causes when
it only sees a static input?

3/27/2007 © 2006 Numenta, Inc. 16

The answer is straightforward. When the static image is
presented to the bottom nodes of the hierarchy, the nodes form a
distribution over the spatial quantization points and from this
they form a distribution over the learned sequences. With no
temporal data to work with, the distribution over the sequences
will be broader than it would be if temporal data were available.
However, the node will form a distribution over the sequences in
either case. The Belief Propagation techniques of the hierarchy
will try to resolve the ambiguity of which sequences are active.
It turns out that in vision, it is often possible to do so. That is,
with vision, the low-level ambiguity resultant from not having
temporal sensory data can still be resolved (via Belief
Propagation) as the data ascends the hierarchy. If the image is
sufficiently unambiguous, the top of the hierarchy is certain
what cause(s) it is seeing.

This is not always the case. You can imagine a wooded scene
within which is hidden a camouflaged animal. When shown this
scene, you don’t see the animal. However, if the animal moves,
even a little bit, relative to the background, the percept of the
animal jumps out. In this case, the added movement information
tightens the distribution over sequences in the lower levels of the
hierarchy, which is sufficient to resolve the ambiguity of the
input. In fact, taking this idea to the extreme, it is possible to
present a completely random field of black and white pixels, and
by moving a subset of these random pixels in a coordinated way
produce an “image”. The spatial pattern is always random at
every point in time but you still see an image because of the
movement of the pixels.

The representation of time
For some temporal patterns, the specific or relative time between
the elements in the sequence is important. For example, the
times between notes in a melody or the times between phonemes
in spoken words, are an important part of these causes.
Biological brains have the ability to learn sequences with or
without specific timing information. If there are consistent time
intervals in a sequence, the brain will learn them. If there are no
consistent time intervals in a sequence, the brain will store the
sequence without time. In the book On Intelligence, a proposal
was made as to how the brain stores this timing information.
HTMs need equivalent mechanisms to discover and infer causes
that require specific timing information. Fortunately, many
applications do not require this.

At this point, we have covered most of the concepts of HTMs.
The next section provides answers to some commonly asked
questions about HTM technology.

6. Questions

This section contains some common questions about HTMs and
a few miscellaneous topics that have not yet been covered. It is
not essential to know this material to deploy HTM-based
systems, although it might clarify some of the topics already
discussed. The order of the questions is not meaningful.

How does motivation and emotion fit into the
theory of HTM?
A common question we hear is, “There seems to be no role for
emotion and motivation in HTMs. How can the HTM know
what is important and what is not?”

In biological brains, there are several systems involved in
evaluating the emotional saliency of different situations. These
emotional centers are highly-evolved sub-systems that are tuned
for their task. They are not located in the neocortex. As a general
rule, these emotional sub-systems communicate with the
neocortex in a fairly simple way. They send signals that spread
broadly throughout the entire neocortex. These signals are
related to rates of learning and arousal. It is as if the sub-systems
are saying, “I will evaluate the emotional saliency of the current
situation and when I see something important, I will tell you, the
neocortex, to remember it.”

HTM-based systems need a similar learning control signal. Most
of the time, it will be as simple as the designer of the system
deciding when the HTM should be learning and at what rate. A
visual inference HTM might be trained in the laboratory under
ideal conditions and later deployed with no ability to learn
further. Some applications might have an automatic learning
saliency system, such as a car that automatically turns on
learning when the brakes are applied hard. So even though
HTM-based systems have no emotions per se, the functional role
of emotions related to the neocortex can be easily met.

What happened to the CPTs? When and how are
they trained?
Recall that Bayesian networks send belief messages between
nodes. Further recall that CPTs (Conditional Probability Tables)
are two-dimensional memory matrices that convert a belief in
one node into the dimension and language of the belief in
another node. The CPT allows the belief at one node to modify
the belief at another node. Earlier we illustrated CPTs with the
example of nodes representing temperature and precipitation.
After that, we didn’t explain how the CPTs were learned.

Well, we did, but in different language. In an HTM, the CPTs
used in passing information from node to node going up the
hierarchy are formed as a result of learning the quantization
points. The quantization function itself is the CPT. By contrast,
in a traditional Bayesian network the causes at each node would
be fixed, and the CPT would be created by pairing instantaneous
beliefs between two nodes. We can’t do this in HTMs because
the causes represented by each node are not fixed and have to be

3/27/2007 © 2006 Numenta, Inc. 17

learned. Learning the quantization points is in essence a method
of creating a CPT on the fly.

The CPTs that pass messages down the hierarchy between two
nodes can be learned in the traditional way once two nodes have
been trained. It also may be possible to use a transposed version
of the feed-forward CPT as the feedback CPT.

There is one more difference in the CPTs as implemented in an
HTM vs. a traditional Bayesian network. In a traditional
Bayesian network, if three child nodes project up to a single
parent node there would be three separate CPTs, one between
each child and the parent. Biology suggests brains don’t do it
this way. In a brain, the messages from all the child nodes are
mixed together resulting in a single CPT/quantization function.
There are reasons to believe the biological method is superior.
This is the method Numenta has implemented in its HTM
framework.

Why are the number of spatial patterns and
temporal sequences in each node fixed?
There are two basic approaches one can take to learning spatial
and temporal patterns in a node. The first approach is to look at
the incoming patterns and enumerate them. For example, when
defining spatial quantization points you could incrementally
build a list of quantization points as you see new inputs. If a new
input is not close to a previously seen input, you create a new
quantization point. If it is close enough to a previously seen
input, you assume it is the same and don’t create a new
quantization point. Over time, you build a longer and longer list
of spatial quantization points. The same approach could be used
for learning sequences. You could dynamically build a longer
and longer list of sequences as new inputs arrive.

The second approach is to start with a fixed number of spatial
quantization points and a fixed number of sequences. Initially,
they have random meanings. As inputs arrive at the node you
modify the definition of the existing quantization points and
sequences. For example, you would take a new input and decide
which of the initially random quantization points the new input
is closest too. Then you would modify this quantization point to
“move” it closer to the new input. You have to do this gradually
because other nodes in the network are dependent on the output
of the first node. If you rapidly changed the meaning of a
quantization point or a sequence, the other nodes would be
confused.

At Numenta, we have experimented with both of these methods.
It is possible that both can work. We are currently focused on the
latter method for a few reasons. First, we believe that the
biological neocortex uses this method. Therefore, we are certain
it can work for the range of problems humans can solve. Another
reason is that by sticking to a fixed number of quantization
points and a fixed number of sequences in each node, all
learning in the system is restricted to gradual changes. The
meanings of the causes at each node change slowly over time,
and although other nodes need to adjust accordingly, nothing
happens dramatically. The dimension of the inputs, outputs, and

therefore the dimensions of the CPTs are all fixed; only the
values in the memory matrices change.

Using the method where the number of quantization points and
the number sequences can vary, at first seems easier, but it can
lead to difficulties as the dimensions of inputs and outputs
change.

How are temporal patterns represented?
A common question is how long are the sequences that are
stored in a node? Again, there are two basic ways you can
approach this problem; one is to fix the length of sequences and
the other is to make the sequence length dynamic. In this case,
biology uses dynamic length sequences and Numenta has chosen
to emulate that method, although this isn’t necessarily a
requirement. To give you a sense of how this works we will use
a music analogy.

Imagine our node has twelve quantization points, each one
corresponding to the twelve notes in a musical octave. As inputs
come into the node, each of these twelve quantization points
become active corresponding to what note is being played.

Next we assign ten variables to each quantization point. There
are ten “C’s”, ten “D’s”, and ten “A flats”, etc. for a total of 120
variables. Each of these variables represents its particular note at
one location in one sequence. The node can learn any number of
sequences and the sequences can be any length, with the
restriction that the node only has ten of each note to work with.
At one extreme, the node could learn one sequence of 120 notes
long, where each note is used exactly ten times. At the other
extreme, it could learn sixty sequences of length two. But no
matter how many sequences it learns and no matter what the
length of any individual sequence, it only has ten of each note
available.

It is more complicated than this, but this analogy gives the basic
flavor of how we believe neocortex stores sequences and of the
approach currently favored by Numenta.

HTMs are built of discrete regions, but biological
brains are more continuous. What is the
difference?
So far, HTMs have been described as a hierarchical collection of
discrete nodes. The use of discrete nodes is common to Bayesian
networks and indeed to all graphical probability models.

However, biology suggests brains don’t work this way. In an
HTM, the bottom of the hierarchy is a collection of many small
nodes; in a brain the bottom of the hierarchy is one continuous
region of cortex.

Obviously, nature’s approach works just fine. However, we
don’t yet have the mathematical tools to understand continuous
models as well as we can discrete models. At Numenta, we have
so far stayed with the discrete node approach. We have
demonstrated that this approach works and are studying whether

3/27/2007 © 2006 Numenta, Inc. 18

it can be made to perform as well as the continuous approach.
We ultimately expect to move to a continuous model.

HTMs model the world. But in doing so they don’t
remember specific details and events. Humans
have the ability to remember some specifics. How
can this be done in HTM-based systems?
HTMs as described in this paper and as implemented so far by
Numenta do not have the ability to remember specific events.
HTMs actually throw away the details in an effort to build a
model of the world. For example, if you trained an HTM-based
visual system to recognize dogs, it won’t remember any of the
specific visual images of dogs it was trained on. There might be
millions of patterns the HTM was trained on and none are
remembered in detail. The process of discovering causes in the
world is one of learning the “persistent” structure in the world,
not one of learning any particular pattern that was only seen
once.

However, humans do remember specific unitary events,
especially if the event was emotionally salient. If something
particularly bad or particularly good happens, you are likely to
remember the details of it for a long time. For example, you
almost certainly can’t remember what you ate for lunch three
weeks ago. However, if during that lunch you became very ill, or
something bizarre happened to you, you might remember details
of the lunch for the rest of your life.

In biological brains, the hippocampus is strongly implicated in
forming these “episodic” memories. We believe we understand
enough about the relationship between the hippocampus and the
neocortex to create an equivalent “episodic” memory as an
adjunct to HTMs. At this time, we are continuing to consider this
capability and ultimately expect to add it to HTMs.

What does the fovea do and do HTM-based
systems need one?
Light falling on the retina at the back of the eye forms an
inverted but otherwise undistorted image on the retina. However,
the light receptor cells in the retina have a non-uniform
distribution. There is a high concentration of these cells in the
center of the retina, called the fovea, leading to a distorted
representation of the image in the optic nerve and ultimately at
the first level of the cortical hierarchy. As objects move in the
world and as our eyes move, the severe distortion caused by the
fovea appears in different parts of the visual scene.

It is surprising that our visual percept of the world has no
evidence of this distortion. The theory behind HTMs explains
why this is so. Like brains, HTMs form high-level
representations that are invariant to distortion of their input.
HTMs form high-level representations of the world as the world
really is, not as it is sensed. The patterns arriving from the senses
are not what we ultimately care about. It is the persistent causes
in the world that we care about and that are discovered and
represented by the HTM. A blind person and a deaf person form
nearly identical models of the world even though they have

completely different sensory systems. They discover the same
causes through completely different sensory patterns. The low-
level sensory data are just a means of discovering the causes in
the world. Different senses, and distorted senses, all will suffice
as long as they sufficiently sample the causes we care to learn.

The question we want to consider is not how recognition occurs
despite the fovea. That is just a consequence of how HTMs
work. The question of interest is, are foveal-type mechanisms
valuable and should the principle be applied to HTM-based
systems?

The fovea acts like an attention mechanism. Whatever is in the
center of the visual field is over-represented and likely to be
represented at the top of the visual hierarchy. Moving the eyes,
in conjunction with the covert attention mechanism described
earlier, allows fine detail in a scene to be perceived. You can
think of it like a zoom lens on a camera.

In theory, if the entire retina had a density of receptor cells
equivalent to the fovea then there would be less need to move
the eyes. Perception of fine detail could be achieved with just
covert attention. However, this would take a lot more cortex and
more memory. So ultimately the fovea is a means of saving
resources, while maintaining high acuity.

The same principle will probably be useful in some HTM
applications. For example, an HTM-based system that learns
about weather could have a sensory array that samples data from
weather stations spread across a territory. This information could
be presented to the HTM in a two-dimensional array. However,
there could be a region of the sensory array that samples weather
stations that are closer together. This is equivalent of a fovea. By
repositioning this region of high acuity, the HTM would be able
to focus on the weather detail in a particular area. Many HTM-
based systems could use a similar approach.

To date, Numenta, while having thought about these ideas, has
not tested all of them. It is an interesting area for
experimentation.

Are there ethical issues to be considered with
HTMs?
For several years, we have discussed and explored the question
of whether HTMs present any ethical dilemmas. We have
consistently reached the unequivocal conclusion that HTMs do
not pose any unusual ethical concerns. They present similar
upside and similar potential for misuse as many other
technologies such as computers or the internet. This subject is
discussed in more depth in the book On Intelligence.

3/27/2007 © 2006 Numenta, Inc. 19

7. Summary and Conclusion

HTMs capture the algorithmic and structural properties of the
neocortex, and as such, present the first opportunity to solve
many previously unsolved problems in pattern recognition and
machine intelligence. An easy way to think about HTMs is that
they are suitable for tasks humans find easy to do yet computers
find hard to do. However, the algorithmic properties of HTM are
very flexible, and therefore, once understood, also can be
applied to many problems outside of human ability.

Capabilities
The foremost capability of HTM technology is its ability to
discover the causes underlying sensory data. Causes are
persistent and recurring structures in the world. The concept of
“cause” captures everything from language, to physical objects,
to ideas, to the laws of physics, to the actions of other people.
Like humans, HTMs can learn to model all these things and
more. By attaching an HTM to one or more senses, the HTM
gradually and automatically builds internal representations of the
causes in its world. This learning phase requires repeated
exposure to sensory input over time. Causes must persist during
training.

There is a hierarchy of causes in the world coexistent at any
point in time, and HTMs build a corresponding hierarchy of
representations. The instantaneous value of one of these
representations is called a belief.

The representations formed at the top of the hierarchy are of the
highest level causes. These high-level causes are ones that
persist over the longest periods of time, and can span the entire
sensory input space. Causes represented lower down in the
hierarchy span shorter periods of time and smaller areas of the
input space.

Discovering causes is a requisite first step towards later
recognition, but for many applications it is an end in itself.

After discovering causes, HTMs can rapidly infer the causes
underlying novel inputs. Inference is similar to “pattern
recognition”. When an HTM sees a novel input, it determines
not only the most likely high-level cause(s) of that input, but
also the hierarchy of sub-causes. Designers of HTM-based
systems can query the HTM to see what is being recognized

Each node in the network can use its memory of sequences to
predict what should happen next. A series of predictions is the
basis of imagination and directed behavior.

HTMs can perform several types of attention. Covert attention
can be achieved by selectively disabling pathways in the
hierarchy; this allows the HTM to attend to a subset of its entire
input. Attentional priming can be achieved by setting a desired
belief at the top of the hierarchy; this implements a directed
search. Overt attention involves manipulating objects via
behavior.

Technology
Technically, HTMs can be considered a form of Bayesian
network where the network consists of a collection of nodes
arranged in a tree-shaped hierarchy. Each node in the hierarchy
self-discovers a set of causes in its input through a process of
finding common spatial patterns and then finding common
temporal patterns. Unlike many Bayesian networks, HTMs are
self-training, have a well-defined parent/child relationship
between each node, inherently handle time-varying data, and
afford mechanisms for covert attention.

Sensory data is presented at the “bottom” of the hierarchy. To
train an HTM, it is necessary to present continuous, time-
varying, sensory input while the causes underlying that sensory
data persist in the environment. That is, you either move the
senses of the HTM through the world, or the objects in the world
move relative to the HTM’s senses.

Inference also is performed with time-varying input, although in
some cases, such as vision, it is possible to perform inference
tasks with static sensory input.

During inference, information flows up the hierarchy starting at
the lowest level nodes closest to sensory input. As the
information rises up the hierarchy, beliefs are formed at
successively higher nodes, each representing causes over larger
and larger spatial areas and longer and longer temporal periods.

Belief propagation-like techniques lead all nodes in the network
to quickly reach beliefs that are consistent with the bottoms-up
sensory data. Top-down predictions can influence the inference
process by biasing the network to settle on predicted causes.

HTMs are memory systems. By this we mean that HTMs must
learn about their world. You sometimes can supervise the
learning process but you can’t program an HTM. Everything an
HTM learns is stored in memory matrices at each node. These
memory matrices represent the spatial quantization points and
sequences learned by the node.

Being a new technology, there are many advances ahead in our
understanding of HTMs. For example, we need to improve our
ability to measure and define the capacity of an HTM. We need
to develop useful heuristics for how best to specify hierarchies to
match particular problems. We have a lot to do in order to
improve our training methods. And although we have developed
algorithms for spatial quantization and time-based pooling, we
are certain they can and will be improved. There will be many
years of advances and refinements as we learn how to use this
technology.

The first implementation of the Numenta HTM platform is on
standard Linux-based computers. The platform tools will run on
anything from a single CPU to clusters with many CPUs. We
anticipate various forms of custom hardware will ultimately be
developed specifically for HTMs but this is not necessary today.

3/27/2007 © 2006 Numenta, Inc. 20

Implications
HTM is a powerful new computing paradigm that may
ultimately equal the importance of traditional programmable
computers in terms of societal impact and financial opportunity.

One of Numenta’s goals is to maximize the beneficial impact of
HTM technology. The approach we are taking to achieve this is
to create a platform that makes it easy for engineers and
scientists to experiment with the HTM technology, develop
HTM-based applications, and to create exciting business
opportunities based on HTM. In addition to documenting the
platform and tools, Numenta will make available the source code
for many parts of the platform. This source code access should
allow developers to better understand how Numenta’s tools
work and provide an opportunity and financial incentive to
extend the platform.

Because HTMs model the large-scale structure and function of
the neocortex, Numenta’s tools also should be useful in the
fields of psychology, education, psychiatry, and neuroscience as
a way to explore the capabilities of healthy humans and to better
understand mental disease.

We only have just started to develop this compelling new
paradigm of intelligent computing based on HTM technology.
We are putting in place the platform and theoretical foundation
today. We expect to make great progress over the coming years
in understanding the limits of HTMs, how they will scale, how
they will perform, and what problems they will solve.

Most importantly, we look forward to building a community of
people working on this technology, and applying it to a broad
range of challenging real-world problems.

